Кто в процессе фрезерования совершает главное движение. Режимы резания при фрезеровании. Основные понятия о работе фрезерных станков


Различают встречное фрезерование при подаче заготовки навстречу вращению фрезы (рис. 84, в ) и попутное при совпадении направлений вращения фрезы и подачи (рис. 84, г ).

При встречном фрезеровании зуб постепенно врезается в металл,
и нагрузка увеличивается от нуля до максимального значения. Такой метод применяют при черновой обработке деталей, имеющих твердую поверхностную корку, так как зуб работает из-под корки. При этом усилия резания стремятся оторвать заготовку от поверхности стола, что при больших сечениях стружки приводит к вибрациям, ухудшению качества обработки.

При попутном фрезеровании зуб фрезы сразу подвергается максимальной нагрузке, заготовка прижимается к поверхности стола, что обеспечивает более высокое качество обработанной поверхности, повышает стойкость режущего инструмента.

Основные работы, выполняемые на фрезерных станках,

И применяемый инструмент

Горизонтальные плоскости обрабатывают цилиндрическими фрезами (рис. 85, а ) на горизонтально-фрезерных станках либо торцевыми фрезами (рис. 85, б , в ) на вертикально-фрезерных и продольно-фрезерных станках.

Вертикальные плоскости обрабатывают на горизонтально-фрезерных станках торцевыми или дисковыми фрезами, на продольно-фрезерных - торцевыми и на вертикально-фрезерных - концевыми фрезами (рис. 85, в , г , д ).

Наклонные плоскости и скосы обрабатывают на горизонтально-фрезер-ных станках угловыми фрезами (рис. 85, е ) или на вертикально-фрезерных станках с поворотной головкой - торцевыми (рис. 85, ж ). При этом шпиндельную головку с закрепленной в ней фрезой поворачивают на необходимый угол.

Прямоугольные пазы и уступы фрезеруют дисковыми фрезами на горизонтально-фрезерных или концевыми - на вертикально-фрезерных станках (рис. 85, з , и ).

Пазы Т-образные и типа «ласточкин хвост» фрезеруют на вертикально-фрезерном станке в два прохода. Ранее прорезают прямоугольный паз цилиндрической концевой фрезой, а затем окончательно обрабатывают паз фрезой соответствующего профиля (рис. 85, к , л ).

а б в г д
В
В
V
V
V
V
V
V
V
V
V
V
V
V
V
V a
S
S
S
В
е ж з и
п р с
1
2
3
4

Шпоночные пазы открытые обрабатывают на горизонтально-фрезерных станках дисковыми фрезами (рис. 85, о ), а закрытые -
на вертикально-фрезерных станках концевыми (рис. 85, м ) или специальными шпоночными фрезами.

Фасонные поверхности обрабатывают фасонными фрезами соответствующего профиля (рис. 85, п , р ), преимущественно на горизонтально-фрезерных станках, а сложные пространственные фасонные поверхности - на специальных копировально-фрезерных станках.Сложные поверхности , представляющие собой сочетания горизонтальных, вертикальных и наклонных плоскостей, а иногда и криволинейных поверхностей, часто фрезеруют набором фрез 1 , 2 , 3 , 4 на горизонтально- и продольно-фрезерных станках (рис. 85, с ).

Фрезерные станки

Существует много типов фрезерных станков: 1) консольно-фрезер-ные; 2) продольно-фрезерные; 3) фрезерные станки непрерывного действия; 4) шпоночно-фрезерные; 5) резьбофрезерные; 6) копировально-фрезерные; 7) специальныеи др.

Консольно-фрезерные станки имеют стол, на котором устанавливается приспособление с заготовкой, размещенный на консольной балке (консоли). Консоль может перемещаться по вертикальным направляющим станины. На этих станках можно выполнять разнообразные фрезерные работы.

Консольно-фрезерные станки подразделяют на горизонтально-фрезер-ные, универсально-фрезерные, вертикально-фрезерные, универсальные. У горизонтально-фрезерного станка ось шпинделя расположена горизонтально, поэтому на нем могут быть закреплены только дисковые или цилиндрические фрезы.

Вертикально-фрезерный станок устроен аналогично горизонтально-фрезерному, но ось шпинделя у него расположена вертикально. Фрезерование на этих станках осуществляется торцевыми и концевыми фрезами.

Практическое занятие 1,2. Основы металлообработки

План занятия:

1. Особенности процесса фрезерования

Существуют различные виды механической обработки: точение, фрезерование, сверление, строгание и т.д. Несмотря на конструкционные отличия станков и особенности технологий, управляющие программы для фрезерных, токарных, электроэрозионных, деревообрабатывающих и других станков с ЧПУ создаются по одному принципу.

Процесс фрезерования заключается в срезании с заготовки лишнего слоя материала для получения детали требуемой формы, размеров и шерохо­ватости обработанных поверхностей. При этом на станке осуществляется перемещение инструмента (фрезы) относительно заготовки или перемещение заготовки относительно инструмента.

Для осуществления процесса резания необходимо иметь два движения - главное и движение подачи . При фрезеровании главным движением является вращение инструмента, а движением подачи является поступательное движение заготовки. В процессе резания происходит образование новых поверхностей путем деформирования и отделения поверхностных слоев с образованием стружки.

При обработке различают встречное и попутное фрезерование. Попутное фрезерование или фрезерование по подаче - способ, при котором направления движения заготовки и вектора скорости резания совпадают. При этом толщина стружки на входе зуба в резание максимальна и уменьшается до нулевого значения на выходе. При попутном фрезеровании условия входа пластины в резание более благоприятные. Удается избежать высоких температур в зоне резания и минимизировать склонность материала заготовки к упрочнению. Большая толщина стружки является в данном случае преиму­ществом. Силы резания прижимают заготовку к столу станка, а пластины - в гнезда корпуса, способствуя их надежному креплению. Попутное фрезерование является предпочтительным при условии, что жесткость оборудования, крепления и сам обрабатываемый материал позволяют применять данный метод.

Встречное фрезерование, которое иногда называют традиционным, наблюдается, когда скорости резания и движение подачи заготовки направлены в противоположные стороны. При врезании толщина стружки равна нулю, на выходе - максимальна. В случае встречного фрезерования, когда пластина начинает работу со стружкой нулевой толщины, возникают высокие силы трения, отжимающие фрезу и заготовку друг от друга. В начальный момент врезания зуба процесс резания больше напоминает выглаживание, с сопутствующими ему высокими температурами и повышенным трением. Зачастую это грозит нежелательным упрочнением поверхностного слоя детали. На выходе из-за большой толщины стружки в результате внезапной разгрузки зубья фрезы испытывают динамический удар, приводящий к выкрашиванию и значительному снижению стойкости.



На толщину срезаемого слоя при фрезеровании влияет главный угол в плане, который измеряется между главной режущей кромкой пластины и обрабатываемой поверхностью. Уменьшение угла в плане ведет к образованию более тонкой стружки для данного диапазона подач. Уменьшение толщины стружки происходит из-за распределения одного и того же объема снимаемого металла на большей длине режущей кромки. При меньшем угле в плане режущая кромка постепенно входит в работу и выходит из нее. Это уменьшает радиальную составляющую силы резания и защищает режущую кромку от возможных поломок. С другой стороны, неблагоприятным фактором является увеличение осевой составляющей силы резания, что вызывает ухудшение шероховатости поверхности тонкостенных деталей.

При угле в плане 90° сила резания направлена радиально в соответствии с направлением подачи. Основная область применения таких фрез - обработка прямоугольных уступов.

При работе фрезой с углом в плане 45° осевые и радиальные силы резания практически одинаковы и потребляемая мощность невысока. Это фрезы универсального применения. Особенно они рекомендуются для обработки материалов, дающих элементную стружку и склонных к выкрашиванию при значительных радиальных усилиях на выходе инструмента. При врезании инструмента меньше нагрузка на режущую кромку и меньше склонность к вибрациям при закреплении в приспособлениях с небольшими усилиями зажима. Меньшая толщина срезаемого слоя при угле в плане 45° позволяет увеличивать минутную подачу стола, т.е. повысить производительность об работки.

Фрезы с углом в плане 10° рекомендуются для продольного фрезерования с большими подачами и плунжерного фрезерования, когда характерны небольшие толщины стружки и высокие скоростные параметры. Преимуществом обработки такими фрезами являются низкие радиальные усилия резания. А также преобладание осевой составляющей силы резания, как при радиальном, так и при осевом направлении подачи, что уменьшает склонность к вибрациям и предоставляет большие возможности для увеличения скоростей снятия материала.

У фрез с круглыми пластинами главный угол в плане меняется от 0 до 90° в зависимости от глубины резания. Эти фрезы имеют очень прочную режущую кромку и могут работать при больших подачах, поскольку образуют довольно тонкую стружку на большой длине режущей кромки. Фрезы с круглыми пластинами рекомендуется применять для обработки труднообрабатываемых материалов, таких как титан и жаропрочные сплавы. Направление сил резания меняется вдоль радиуса пластины, поэтому направление суммарной нагрузки зависит от глубины резания. Современная геометрия круглых пластин делает их более универсальными, обеспечивая стабильность процесса резания, меньшую потребляемую мощность и, соответственно, меньшие требования к жесткости оборудования. В настоящее время эти фрезы широко используются для снятия больших объемов металла.

процесса фрезерования

Фрезерование является наиболее распространённым методом обработки плоскостей, пазов, фасонных поверхностей, а также резьб. Метод обеспечивает получение поверхностей 3-4 кл. точности (8-10кв.) при чистоте 4-7 кл. Режущим инструментом является фреза – многозубый инструмент, выполненный в виде тела вращения, на образующей или торце которого расположены режущие зубья с режущими кромками. Главное движение при фрезеровании – вращение фрезы, а движение подачи – поступательное движение заготовки, закреплённой на столе станка.

Различают два основных вида фрезерования: цилиндрическое и торцовое (рис.55)

Геометрия фрезы (рис.56)

Обычно зубья фрезы выполняются по винтовой линии под углом наклона зубьев к оси фрезы ω. У цилиндрической фрезы с винтовым зубом направление главной режущей кромки совпадает с направлением винтовой линии.

Передний угол γ рассматривается в плоскости перпендикулярной к главной режущей кромке (сеч. А-А) и расположен между касательной к передней поверхности и плоскостью перпендикулярной к плоскости резания.

Задний угол α рассматривается в плоскости, перпендикулярной оси фрезы (сеч. Б-Б) и расположен между касательной к задней поверхности и касательной к поверхности резания (плоскости резания)

3. Элементы режимов резания и срезаемого слоя при цилиндрическом фрезеровании (рис.44)

а) глубина резания t (мм) – величина срезаемого слоя в направлении перпендикулярном к обработанной поверхности;

б) подача S – при фрезеровании различают 3 вида подачи:

- минутная подача S м – величина перемещения заготовки относительно фрезы за 1 мин

S м = S z z n (мм/мин), где

- подача на 1 зуб фрезы S z (мм/зуб) – величина перемещения заготовки относительно фрезы за время её поворота на 1 зуб;

z – число зубьев фрезы; n – число оборотов(частота вращения) фрезы.

- подача на 1 оборот фрезы S о = S z z (мм/об)– величина перемещения заготовки относительно фрезы за 1 её оборот.

в) ширина фрезерования В – ширина обрабатываемой поверхности в направлении параллельном оси фрезы.

г) ширина среза b – длина соприкосновения режущей кромки зуба с обрабатываемой заготовкой. Для прямозубой фрезы b = В. При фрезеровании цилиндрической фрезой с винтовым зубом ширина срезаемого слоя величина переменная.

д) толщина среза а – переменная величина; в момент входа зуба в контакт с обрабатываемой поверхностью а = min, а в момент выхода а = mаx (при попутном фрезеровании), при встречном – наоборот.

е) Скорость резания V рез – окружная скорость вращения фрезы. Первоначально определяется скорость, допускаемая режущими свойствами фрезы по аналитической формуле:

V рез = (м/мин);

Затем по найденной окружной скорости определяется число оборотов 9частота вращения) фрезы по формуле:

(об/мин),(мин -1)

Существуют различные виды механической обработки: точение, фрезерование, сверление, строгание и т. д. Несмотря на конструкционные отличия станков и особенности технологий, управляющие программы для фрезерных, токарных, электроэрозионных, деревообрабатывающих и других станков с ЧПУ создаются по одному принципу. В этой книге основное внимание будет уделено программированию фрезерной обработки. Освоив эту разностороннюю технологию, вероят- нее всего, вы самостоятельно разберетесь и с программированием других видов обработки. Вспомним некоторые элементы теории фрезерования, которые вам обязательно пригодятся при создании управляющих программ и работе на станке.

Процесс фрезерования заключается в срезании с заготовки лишнего слоя материала для получения детали требуемой формы, размеров и шероховатости об- работанных поверхностей. При этом на станке осуществляется перемещение инструмента (фрезы) относительно заготовки или, как в нашем случае (для станка на рис. 1.4–1.5), перемещение заготовки относительно инструмента.

Для осуществления процесса резания необходимо иметь два движения – главное и движение подачи. При фрезеровании главным движением является враще- ние инструмента, а движением подачи – поступательное движение заготовки. В процессе резания происходит образование новых поверхностей путем деформирования и отделения поверхностных слоев с образованием стружки.

При обработке различают встречное и попутное фрезерование. Попутное фрезерование, или фрезерование по подаче, – способ, при котором направления движения заготовки и вектора скорости резания совпадают. При этом толщина стружки на входе зуба в резание максимальна и уменьшается до нулевого значения на выходе. При попутном фрезеровании условия входа пластины в резание более благоприятные. Удается избежать высоких температур в зоне резания и минимизировать склонность материала заготовки к упрочнению. Большая толщина стружки является в данном случае преимуществом. Силы резания прижимают заготовку к столу станка, а пластины – в гнезда корпуса, способствуя их надежному креплению. Попутное фрезерование является предпочтительным при условии, что жесткость оборудования, крепления и сам обрабатываемый материал позволяют применять данный метод.


Встречное фрезерование, которое иногда называют традиционным, наблюдается, когда скорости резания и движение подачи заготовки направлены в противоположные стороны. При врезании толщина стружки равна нулю, на выходе – максимальна. В случае встречного фрезерования, когда пластина начинает работу со стружкой нулевой толщины, возникают высокие силы трения, отжимающие фрезу и заготовку друг от друга. В начальный момент врезания зуба процесс резания больше напоминает выглаживание, с сопутствующими ему высокими тем пературами и повышенным трением. Зачастую это грозит нежелательным упрочнением поверхностного слоя детали. На выходе из-за большой толщины стружки в результате внезапной разгрузки зубья фрезы испытывают динамический удар, приводящий к выкрашиванию и значительному снижению стойкости.


В процессе фрезерования стружка налипает на режущую кромку и препятствует ее работе в следующий момент врезания. При встречном фрезеровании это может привести к заклиниванию стружки между пластиной и заготовкой и, со ответственно, к повреждению пластины. Попутное фрезерование позволяет избежать подобных ситуаций. На современных станках с ЧПУ, которые обладают высокой жесткостью, виброустойчивостью и у которых отсутствуют люфты в сопряжении ходовой винт-гайка, применяется в основном попутное фрезерование.

Припуск – слой материала заготовки, который необходимо удалить при обработке. Припуск можно удалить в зависимости от его величины за один или не- сколько проходов фрезы.

Принято различать черновое и чистовое фрезерования. При черновом фрезеровании обработку производят с максимально допустимыми режимами резания для выборки наибольшего объема материала за минимальное время. При этом, как правило, оставляют небольшой припуск для последующей чистовой обработки. Чистовое фрезерование используется для получения деталей с окончательными размерами и высоким качеством поверхностей.

Сущность процесса фрезерования. Фрезерование - процесс резания металла, осуществляемый вращающимся режущим инструментом при одновременной линейной подаче заготовки. Материал с заготовки снимают на определенную глубину фрезой, работающей либо торцовой стороной, либо периферией. Главным движением при фрезеровании является вращение фрезы v (рис. 33). Скорость главного движения определяет скорость вращения фрезы. Движением по­дачи s при фрезеровании является по­ступательное перемещение обрабаты­ваемой заготовки в продольном,

Рис. 33. Схемы фрезерования:

а - цилиндрическое, б и в-торцовое фрезерование; 1-обработанная поверхность, 2-ось вращения фрезы, 3 - обрабатываемая поверхность, 4- стружка, 5 - заготовка, 6 - нож фрезы.

поперечном или вертикальном направ­лениях. Процесс фрезерования являет­ся прерывистым процессом. Каждый зуб фрезы снимает дружку перемен­ной толщины. Операции фрезерования могут быть подразделены на два типа: а) цилиндрическое фрезерование (рис. 33, а); б) торцовое фрезерование (оис. 33, б и в ).

При цилиндрическом фрезеровании резание осуществляется зубьями, рас­положенными на периферии фрезы, и обработанная поверхность 1 является плоскостью, параллельной оси враще­ния фрезы 2.

На рис. 33, а показана фреза с пря­мым зубом. Наряду с прямозубыми применяются фрезы с винтовыми зубьями (рис.34).

Рис. 34. Фрезерование цилиндрической винтовой фрезой: В - ширина фрезерования, t - глубина фрезерования, s- наибольшая толщина среза

При торцовом фрезеровании (см. рис. 33) резание осуществляется пери­ферийными и торцовыми режущими кромками зубьев. Толщина среза уве­личивается к центру среза и уменьша­ется в месте выхода фрезы из контак­та с заготовкой. Начальная и конечная толщина среза зависит от отношения ширины заготовки к диаметру фрезы. Изменение толщины среза зависит также от симметричности расположе­ния фрезы относительно заготовки. Большинство других процессов фрезе­рования являются комбинацией ци­линдрического и торцового методов фрезерования.

Особенности стружкообразования при фрезеровании. Процесс образо­вания стружки при фрезеровании со­провождается теми же явлениями, что и при точении. Это деформации, теп­лообразование, образование нароста, вибрации, износ инструмента и др. Но при фрезеровании имеются свои осо­бенности. Резец при точении находит­ся под постоянным действием стружки вдоль всей длины обработки. При фрезеровании зуб за один оборот фре­зы находится под действием стружки незначительное время. Большую часть оборота зуб не участвует в резании, за ^о время он охлаждается, что положительно отражается на его стойко­сти. Вход зуба в контакт с обрабатываемой заготовкой сопровождается ударом о его режущую кромку; ударная нагрузка снижает стойкость зуб; фрезы.


Фрезерование против подачи и по подаче. При фрезеровании цилиндрическими и дисковыми фрезами различают встречное фрезерование - против подачи и попутное-фрезерование по подаче. Когда окружная скорость фрезы противоположна на правлению подачи (рис. 35,а), процесс

Рис. 35. Фрезерование против подачи (о) и по подаче (б)

фрезерования называется встреч­ным. Толщина среза изменяется от ну­ля (в точке А ) до максимальной вели­чины при выходе зуба из контакта с заготовкой (в точке В). Когда направ­ление окружной скорости фрезы и ско­рости подачи совпадают (рис. 35,6), процесс фрезерования называется «по­путным» фрезерованием. При этом способе фрезерования толщина среза изменяется от максимального значения в точке В в начале входа зуба в кон­такт с заготовкой до нуля в точке А (при выходе зуба из контакта с заго­товкой) .

Встречное фрезерование характери­зуется тем, что нагрузка на зуб уве­личивается постепенно, так как тол­щина среза изменяется от нуля при входе до максимума при выходе зуба из заготовки. Зуб фрезы работает из-под корки, выламывая корку снизу, фреза «отрывает» заготовку от стола, приподнимая вместе с ней и стол стан­ка, увеличивая зазоры между направ­ляющими стола и станины, что при значительных нагрузках приводит к дрожанию и увеличению шероховато­сти обработанной поверхности.

При попутном фрезеровании заго­товка прижимается к столу, выбирая имеющиеся зазоры в направляющих стола и станины. Зуб фрезы начинает работать с наибольшей толщиной и сразу подвергается максимальной на­грузке.

Равномерность фрезерования. В процессе фрезерования прямозубой фрезой зуб фрезы входит в контакт с обрабатываемой заготовкой и выходит из него сразу по всей ширине фрезеро­вания. Может оказаться, что в работе будет находиться только один зуб пря­мозубой фрезы, т. е. когда впереди идущий зуб уже вышел из контакта с обрабатываемой заготовкой, а следую­щий за ним зуб не вышел в контакт. В этом случае площадь поперечного сечения среза будет изменяться от ну­левого значения до максимального с последующим падением до нуля или от максимального значения до нуля. Также неравномерно будет изменять­ся сила резания, а следовательно, бу­дет неравномерная периодическая на­грузка на станок, инструмент и обра­батываемую заготовку. Это явления носит название неравномернос­ти фрезерования. На рис. 36

Рис. 36. Схема работы однозубой (условной) фрезой

показана упрощенная схема работы прямозубой фрезы. На фрезе условно показан один зуб. Зуб врезается в за­готовку сразу по всей ширине фрезеро­вания. Фреза испытывает толчок. При дальнейшем повороте фрезы толщина стружки будет постепенно увеличи­ваться (положения 2, 3, 4), будет уве­личиваться и сила резания. На участ­ке 4-5 зуб фрезы одновременно выхо­дит из обрабатываемого металла, и си­ла резания быстро уменьшается до нуля.

Как видно, нагрузка на зуб фрезы в процессе резания резко изменяется. Чем большее число зубьев будет уча­ствовать в работе одновременно, тем более равномерным будет фрезерование. На рис. 37 показана схема рабо­ты цилиндрической фрезы с винтовыми зубьями. Зуб такой фрезы врезается в

Рис. 37. Схема работы фрезы с винтовым зубом

обрабатываемую деталь не сразу по всей длине, а постепенно. На участке 1-3 площадь сечения срезаемого слоя (заштрихована) увеличивается, а зна­чит, увеличивается и сила резания. На участке 3 -4 площадь сечения срезаемого слоя и силы резания оказываются постоянными. При дальнейшем движении зуба (участок 4-6) площадь сечения срезаемого слоя и сила резания постепенно уменьшаются. Таким образом, изменение силы резания при работе винтового зуба происходит более плавно, а на некоторых участках сила резания постоянна.

Для обеспечения равномерности фрезерования в работе одновременно должно участвовать не меньше двух зубьев фрезы. Каждый следующий зуб должен вступать в работу в тот момент, когда предыдущий начинает выходить из металла. Для выполнения этого условия нужно, чтобы в тот мо­мент, когда один из двух зубьев попал в положение 6, второй зуб был в по­ложении 1. Это возможно, если расстояние между двумя соседними зубьями фрезы, измеренное вдоль её оси (осевой шаг), должно быть равной ширине фрезерования В (см. рис. 34). Если в работе одновременно участвует более двух зубьев, то осевой шаг должен укладываться по ширине фрезерования целое число раз. Необходимым условием равномерного фрезеро­вания является равенство или кратность (в целых числах) ширины фре­зерования В осевому шагу фрезы.

При торцовом фрезеровании всег­да имеет место неравномерность фрезерования. Чем больше число одновременно работающих зубьев торцовой фрезы и чем больше отношение шири­ны фрезерования к диаметру фрезы, тем больше будет равномерность фре­зерования.