Определение плотности нефти и нефтепродуктов. Метод определения массы Косвенный метод статистических измерений нефтепродуктов

Владимир Хомутко

Время на чтение: 7 минут

А А

Как происходит определение массы нефтепродукта?

Важность контрольных измерений массы при учете нефтепродуктов переоценить трудно. Достоверно вести такой учет можно лишь по весу - в килограммах и тоннах, однако точно определить его в большинстве случаев затруднительно, причем как при динамических измерениях (перевалка нефтепродуктов), так и для статических (в цистерне или резервуаре).

Это объясняется тем фактом, что на практике до сих пор определение массы, как правило, выполняется с помощью косвенных методов. Другими словами, измерению подвергается ряд параметров (объем, плотность, уровень налива и так далее), а сама масса высчитывается расчетным путем.

Методика выполнения измерений массовой концентрации нефтепродукта может быть разной, и эта статья посвящена как раз её видам.

Масса нефти и нефтепродуктов. Методы измерения

Общие требования к методам выполнения измерений массы нефти и нефтепродуктов регламентированы ГОСТ-ом Р за номеров 8.595-2004.

Согласно этому нормативу, выделяют два вида способов измерения: прямые и косвенные. Каждый из этих методов делится на динамический и статический.

Прямые методы подразумевают применение сложных и достаточно дорогих измерительных приборов, в связи с чем они используются, как правило, на предприятиях крупного масштаба, для которых нефть и нефтепродукты – основная сфера деятельности (нефтеперегонных заводах и больших нефтебазах). Прямой динамический метод основан на применении показаний расходомеров, а прямой статический подразумевает использование весов для взвешивания.

В настоящее время наиболее популярным является прямой статический способ измерения количества нефтепродуктов, или взвешивание с помощью электронных весов, которое производится во время налива нефтепродуктов в цистерны (автомобильные или железнодорожные).

Динамический прямой способ с использованием массовых расходомеров в процессе слива/налива нефтепродуктов в данный момент широкого применения не находит, поскольку является относительно новой методикой. Однако специалисты считают его весьма перспективным, и уверены в том, что со временем он будет применяться повсеместно.

Косвенные методы измерения, как правило, применяются предприятиях сферы обеспечения нефтепродуктами среднего и малого размера. Их намного больше, чем предприятий крупного масштаба, поэтому такие методики широко распространены. Косвенный динамический способ измерения предусматривает использование счетчиков объема, а косвенный статический – замеров уровня налива в цистернах и резервуарах, с последующим определением массы расчетным путем при помощи таблиц калибровочного или градуировочного типа. Позволяющие по уровню налива рассчитать объем продукта.

Средства автоматизации учета при перемещении нефтепродуктов чаще всего основаны именно на косвенных методах.

Прямые методики измерения

Для автоматизации учета количества нефтепродуктов, так актуального в настоящее время, результаты прямых методов оформляются безо всяких проблем, поскольку в документах, находящихся в электронном виде, которые отражают количественные показатели перевалки нефтепродуктов или фактические количества, находящиеся на хранении, отражается точно измеренная масса, значения которой получены путем взвешивания на весах или взятые с расходомера.

Помимо этих данных, в системе учета легко отражаются такие важные показатели, как вес тары и, соответственно, вес брутто (при использовании весов) или точные значения, взятые со счетчика расходомера, фиксирующие показатели до начала технологической операции и после неё. Такие документы, как правило, оформляются в виде реестра (например, реестр налива железнодорожных цистерн с эстакады), в котором указываются значения массы, полученные путем взвешивания.

Дополнительно в таком реестре, представленном в виде таблицы, можно указывать и плотность продукта, которая обязательно должна присутствовать в некоторых видах стандартных документов, таких, например, как железнодорожные или товарно-транспортные накладные. Стоит сказать, что практически при использовании прямых способов измерения массы, замеры плотности обычно не проводят, Это значение берется с прилагаемого паспорта качества нефтепродукта.

Точность прямых методик измерения зависит от погрешности, которая характерна для каждого вида измерительного оборудования. Значение этой погрешности, как правило, указывается в паспорте прибора. Однако, точность прямых измерительных способов (другими словами – максимально допустимая погрешность измерений) также нормируется.

Согласно этим нормативам, предельные значения погрешности (в зависимости от метода измерения) выглядят следующим образом:

  • при прямом методе статических измерений с применением весов, на которых взвешиваются расцепленные ж/ж цистерны – ± 0,40 процента;
  • при прямом статическом взвешивании не расцепленных движущихся ж/д цистерн или целых составов ± 0,50 процента;
  • при использовании прямого метода динамических измерений (слив/налив) ± 0,25 процента.

Как можно заметить, предельные значения погрешностей статических измерений больше, чем при использовании динамических. Это обусловлено тем, что статические измерения подразумевают проведение двух взвешиваний.

Информация о величине погрешности применяемого метода определения необходима в тех случаях, когда в процессе приемки нефтепродуктов выявляются расхождения полученного веса с тем, который указан в накладной, выписанной поставщиком. Учет таких расхождений проводится после вычета абсолютной погрешности, допустимого для применяемого в процессе приемки способа измерений.

Как было сказано выше, такие измерительные методики распространены более широко. Ими пользуются большинство нефтеобеспечивающих предприятий.

К косвенным способам измерения массы нефтепродуктов относятся:

  • Приемка:
  1. если слив нефтепродуктов выполняется из железнодорожных цистерн, то применяется методика определения массы с помощью калибровочных таблиц, составленных на каждый тип цистерны;
  2. если слив нефтепродуктов выполняется из автомобильных цистерн, то используют методику определения массы с помощью паспортов, выписываемых на каждую секцию принимаемой цистерны; в таких паспортах содержится информация о полном объеме, диаметре горловины, а также об уровне перелива/недолива в горловине;
  3. если нефтепродукты поступают по трубопроводу, то методика определения массы заключается в либо в использовании количественных показаний счетчиков расходомеров (объем), либо путем проведения замеров в приемных резервуарах, куда сливается поступившая продукция;

Если нефтепродукты отпускаются в автомобильные цистерны, то основным способом определения является расчет массы на основании показаний счетчиков объема расходомеров. Такие расчеты могут подразумевать проведение целого ряда самых разных измерений, а именно:

  1. замер уровня наполнения (как самой цистерны, так и резервуара);
  2. замер уровня «подтоварной» воды (также – и в резервуаре, и в цистерне);
  3. измерение уровня перелива/недолива относительно нулевого уровня (планки), установленного в горловине цистерны;
  4. замер (как правило, измерения производятся либо в резервуаре на разных его уровнях, либо измеряется плотность разных частей партии с проведением последующего усреднения);
  5. измерение температуры отгружаемого продукта (как правило, из также выполняют в резервуаре на разных уровнях, или проводят замеры разных частей партии, значения которых потом усредняют);
  6. измерение температуры окружающей атмосферы;
  7. замер температуры, при которой проводилось измерение плотности.

Как ясно из количества обрабатываемых при расчете данных, определение массы такими способами может сопровождаться большим количеством проводимых вычислений.

Также достаточно много времени занимает поиск необходимой информации в специальных таблицах, таких, так, например, калибровочные таблицы на разные виды цистерн, градуировочные таблицы различных видов резервуаров, таблицы с поправочными коэффициентами для приведения к описанных стандартом условиям значений объема и плотности продукта, и так далее.

В самых простых случаях, характерных для небольших предприятий, определение массы нефтепродукта выполняется умножением его объема на его плотность.

Объем, как правило, определяют с помощью градуировочной таблицы с учетом уровня наполнения, либо по счетчику объемного расходомера. Плотность измеряется либо в резервуаре, либо в наливном стояке. В таких случаях измерения производятся при имеющейся на данный момент температуре продукта, а полученные показатели плотности и объема не пересчитываются к стандартным температурам (или к 15-ти, или к 20-ти градусам Цельсия).

Однако, существует большое количество предприятий, на которых расчеты массы после выполнения всех измерений, требуемых косвенными методиками определения массы, настолько сложны, что на практике без применения средств автоматизации никак не обойтись.

Современные автоматизированные системы учета (АСУ), применяемые для контроля за движением нефтепродуктов, должны быть способны использовать все существующие способы расчетов. Это позволит пользователям вводить только исходные данные, полученные в результате замеров, а определение массы происходит в автоматическом режиме.

Электронные документы, отражающие перемещения нефтепродуктов, чаще всего оформляются в виде таблиц, отражающих текущее состояние резервуаров предприятия.

При этом, для определения массы перекачиваемых нефтепродуктов используется разность текущих состояний резервуаров, определяемых до перекачки и после неё. При этом перекачка может осуществляться (как при отпуске продукта, так и при его приемке) с использованием сразу нескольких резервуаров.

В таких электронных таблицах для каждого отдельного резервуара указываются два набора данных – по начальному состоянию (до проведения технологической операции) и по конечному состояние (после окончания перекачки).

При этом каждый набор данных состоит из следующей информации:

  • уровень наполнения конкретного резервуара;
  • объем, который определяется в автоматическом режиме с помощью градуировочной и, при необходимости, корректировочной таблицы (если уровень измеряется на в целых значениях сантиметров);
  • температура перекачиваемого продукта. В зависимости от типа резервуара и уровня его наполнения возникает необходимость проведения от одного до трех измерений температурных показаний с последующим их усреднением:
  • показатель температуры на нижнем уровне резервуара;
  • показатель в средней части;
  • показатель температуры на верхнем уровне резервуара;
  • средний показатель температуры (для усреднения применяются различные методики, которые зависят от типа и уровня наполнения конкретного резервуара;
  • температура окружающей атмосферы (расчет объема может проводиться с применением поправочных коэффициентов, учитывающих деформацию резервуарных стенок, степень которой зависит от разности температурных значений самого нефтепродукта и окружающей резервуар среды);
  • значение температур, при которой проводился замер (этот показатель необходим для того, чтобы в расчете учесть линейное расширение стенок измерительной аппаратуры (ареометра));
  • сам показатель плотности нефтепродукта;
  • значение его плотности при 20-ти градусах Цельсия (это значение получается автоматически, с помощью пересчета фактической плотности с учетом температуры, при которой она измерялась);
  • сама масса продукта (это значение также рассчитывается в автоматическом режиме с учетом всех данных исходных измерений).

Как правило, такие таблицы составляют в целых значениях сантиметров. Однако, если измерения уровня на предприятии проводятся более точно (например, до миллиметра), то в этих случаях расчет объема производится с применением математических методов аппроксимации значений между ближайшими уровнями, выраженными в градуировочных таблицах целыми единицами.

Другой метод, применяемый в случаях точных измерений уровня, подразумевает использование таблицы коррекции, которая содержит значения объемов на каждый миллиметр каждого уровня резервуара. Если такая корректировочная таблица – правильно составлена, то обе методики (и математическая аппроксимация, и с помощью таблицы коррекции) на выходе дают одинаковые значения.

В связи с этим, при использовании автоматизированной системы учета, в которой расчеты проводятся с помощью компьютерной техники, составление корректировочных таблиц для их дальнейшего использования теряет свой смысл. Таблицы коррекции призваны облегчить ручные расчеты, поэтому нередко они есть в паспортах на резервуары, а их применение регламентируется специальными инструкциями, регулирующими процесс выполнения замеров. В связи с этим зачастую полностью отказаться от таких таблиц не представляется возможным.

Масса нефтепродукта при использовании косвенных способов определятся как произведение показателей объема и плотности.

Однако этот, простой на первый взгляд, расчет (в зависимости от применяемой методики измерений массы) может выполняться разными способами:

  • расчет по фактическим показателям плотности объема;
  • расчет по приведенным к стандартным условиям значениям плотности и объема (значения приводятся либо к температурному значению 20-ти, либо к 15-ти градусам Цельсия);

Замер плотности должен проходить в лабораторных условиях. В связи с этим, применение первого варианта расчета (по фактическим значениям) возможно только в тех случаях, когда доставка проб нефтепродукта в лабораторию производится в специальных термостатах.

Но даже при соблюдении этих условий, в случае использования некоторых методов выполнения измерений массы, требуется проведение расчетов фактических значений объема с учетом температурных коэффициентов, делающих поправку на линейное расширение материала, из которого изготовлены стенки цистерны или резервуара, а также на линейное расширение измерительного инструмента (рулетки или метроштока), с помощью которого выполнялись фактические замеры.

Приведение значений плотности и объема к стандартным условиям производится при помощи специально разработанных таблиц, которые отвечают требованиям ASTM D 1250-2007. Таких таблиц – всего четыре вида: для плотности при 20 градусах Цельсия; для плотности при 15-ти градусах Цельсия; для объема при 20-ти градусах; для объема при 15-ти градусах.

Размер таких таблиц – огромен, поскольку диапазон отраженных в них температурных значений находится в пределах от минус 50-ти до плюс 150-ти градусов Цельсия, а величина шага составляет всего 0,05 градуса. Диапазон отраженных в таблицах плотностей начинается от 0,4700 и заканчивается 1,2050 килограмм на кубический дециметр, с шагом 0,0001.

Другими словами, каждая таблица состоит примерно из 4-х тысяч строк и 7-ми тысяч 300 столбцов, и содержит около 30 миллионов значений. Разумеется, при проведении расчетов ручным способом применять таблицы такого размера крайне трудно, поэтому они используются только в системах автоматического учета.

Точность косвенных способов определения массы нефтепродуктов зависит от применяемых методов выполнения измерений массы. Информация о точной величине погрешности необходима только тогда, когда: либо полученные при замерах значения массы не совпадают с указанными поставщиком, либо на предприятии проводится инвентаризация.

В остальных случаях точность методики задается в целом. К примеру, если масса железнодорожной цистерны больше 120 тонн, то погрешность составляет 0,5 процента от общей массы, а если меньше 120 тонн, то 0,65 процента.

В случае применения более сложных методик выполнения измерений, точность, как правило, рассчитывают для каждого конкретного замера.

Погрешность обычно всегда меньше одного процента, а её значение зависит от:

  • точности составления калибровочной или градуировочной таблицы, которые содержатся либо в паспорте на резервуар, либо в технических условиях на железнодорожную цистерну;
  • погрешности измерительного инструмента для замеров уровня продукта, указанной в паспорте на рулетку или метрошток;
  • погрешности измерительного термометра, используемого для измерения температуры, которая указана в его паспорте;
  • погрешности ареометра при замерах плотности (также берется из паспорта);
  • погрешности счетчиков расходомера при определении объема (указывается в паспорте на счетчик);
  • количества проводимых измерений.

Стоит отметить, что регистрировать информацию о каждом конкретно применяемом измерительном приборе при проведении каждого отдельного измерения – весьма сложная задача. Такая регистрация характерна для химических лабораторий определения качества продукта.

На обычном предприятии нефтеобеспечения для проведения замеров, как правило, используются однотипные измерительные инструменты. В связи с этим, точность, которая используется при расчете погрешности в процессе определения массы нефтепродукта, чаще всего задают один раз для каждого конкретного метода выполнения измерений массы.

В практической деятельности на одном предприятии возможно применение сразу нескольких методик определения массы, поэтому автоматизированная система учета должна включать в себя все используемые в конкретной организации расчетные методики.

Отдельный метод измерений массы может применяться:

  • для всей нефтебазы в целом;
  • для каждого конкретного склада,
  • для каждого резервуара;
  • для каждой конкретной технологической операции по перевалке нефтепродуктов.

Существующие современные системы автоматического учета позволяют использовать самые разные методы определения массы, успешно справляясь при этом с огромными объемами информации. Однако, их повсеместное внедрение сталкивается с серьезными трудностями.

Например, разные предприятия, имеющие практически одинаковое оснащение (как по типам резервуаров, так и по виду применяемого измерительного оборудования), а также занимающиеся одной и той же деятельностью (типовые нефтебазы или АЗС), подчас применяют совершенно разные методики.

Более того, эти методики нередко разработаны разными метрологическими организациями, и являются чуть ли не индивидуальными для каждого отдельного предприятия. В связи с этим, создать типовую автоматизированную систему учета движения нефтепродуктов, которая подошла бы всем без исключения организациям нефтепродуктообеспечения, не представляется возможным.

Поэтому типовые автоматизированные системы обычно включают в себя только общие алгоритмы, такие, как:

  • алгоритмы приведения к стандартным условиям значений объема и плотности;
  • электронные хранилища с поисковыми системами, содержащие градуировочные и калибровочные таблицы;
  • системы расчета объема с помощью этих таблиц через показатель уровня;
  • методы обнаружения расхождений, которые превышают установленные пределы и тому подобное.

Остальные алгоритмы включаются в систему при установке её на конкретное предприятие и чаще всего являются индивидуальными.

Однако, применение средств автоматизации при выполнении таких расчетов все равно значительно упрощает задачу по контролю движения нефтепродуктов, вне зависимости от размеров конкретного предприятия.

Утвержден и введен в действие

Постановлением Госстандарта СССР

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

НЕФТЬ И НЕФТЕПРОДУКТЫ

МЕТОДЫ ИЗМЕРЕНИЯ МАССЫ

Petroleum and petroleum products.

Methods of mass measurement

ГОСТ 26976-86

Группа Б09

ОКСТУ 0001

Взамен ГОСТ 8.370-80 и

ГОСТ 8.378-80

Срок введения

Настоящий стандарт устанавливает методы измерения массы (далее - методы) нефти и жидких нефтепродуктов, а также битумов и пластических смазок (далее - продуктов).

Стандарт является основополагающим документом для разработки методик выполнения измерений.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Стандарт регламентирует методы измерений массы брутто и массы нетто продуктов.

Основным методом при поставках на экспорт и коммерческих операциях по нефти и нефтепродуктам, кроме мазутов, битумов и пластичных смазок, является динамический метод с применением счетчиков (расходомеров).

1.2. Продукты должны соответствовать требованиям действующей нормативно-технической документации.

1.3. Термины, используемые в настоящем стандарте, и пояснения к ним приведены в справочном Приложении 1.

2. МЕТОДЫ ИЗМЕРЕНИЙ

2.1. При проведении учетно-расчетных операций применяют прямые и косвенные методы.

2.2. При применении прямых методов измеряют массу продуктов с помощью весов, весовых дозаторов и устройств, массовых счетчиков или массовых расходомеров с интеграторами.

2.3. Косвенные методы подразделяют на объемно-массовый и гидростатический.

2.3.1. Объемно-массовый метод

2.3.1.1. При применении объемно-массового метода измеряют объем и плотность продукта при одинаковых или приведенных к одним условиям (температура и давление), определяют массу брутто продукта, как произведение значений этих величин, а затем вычисляют массу нетто продукта.

2.3.1.2. Плотность продукта измеряют поточными плотномерами или ареометрами для нефти в объединенной пробе, а температуру продукта и давление при условиях измерения плотности и объема соответственно термометрами и манометрами.

2.3.1.3. Определение массы нетто продукта

При определении массы нетто продукта определяют массу балласта. Для этого измеряют содержание воды и концентрацию хлористых солей в нефти и рассчитывают их массу.

Массу механических примесей определяют, принимая среднюю массовую долю их в нефти по ГОСТ 9965-76.

2.3.1.4. В зависимости от способа измерений объема продукта объемно-массовый метод подразделяют на динамический и статический.

Динамический метод применяют при измерении массы продукта непосредственно на потоке в нефтепродуктопроводах. При этом объем продукта измеряют счетчиками или преобразователями расхода с интеграторами.

Статический метод применяют при измерении массы продукта в градуированных емкостях (вертикальные и горизонтальные резервуары, транспортные емкости и т.п.).

Объем продукта в резервуарах определяют с помощью градуировочных таблиц резервуаров по значениям уровня наполнения, измеренным уровнемером, метроштоком или металлической измерительной рулеткой. В емкостях, градуированных на полную вместимость, контролируют уровень наполнения, и определяют объем по паспортным данным.

2.3.2. Гидростатический метод

2.3.2.1. При применении гидростатического метода измеряют гидростатическое давление столба продукта, определяют среднюю площадь заполненной части резервуара и рассчитывают массу продукта, как произведение значений этих величин, деленное на ускорение силы тяжести.

Массу отпущенного (принятого) продукта определяют двумя методами:

как разность масс, определенных в начале и в конце товарной операции вышеизложенным методом;

как произведение разности гидростатических давлений в начале и в конце товарной операции на среднюю площадь сечения части резервуара, из которого отпущен продукт, деленное на ускорение силы тяжести.

2.3.2.2. Гидростатическое давление столба продукта измеряют манометрическими приборами с учетом давления паров продукта.

2.3.2.3. Для определения средней площади сечения части резервуара металлической измерительной рулеткой или уровнемером измеряют уровни продукта в начале и в конце товарной операции и по данным градуировочной таблицы резервуара вычисляют соответствующие этим уровням средние площади сечения.

Допускается вместо измерения уровня измерять плотность продукта по п. 2.3.1.2 и определять:

уровень налива для определения средней площади сечения, как частного от деления гидростатического давления на плотность;

объем нефти для определения массы балласта, как частного от деления массы на плотность.

2.4. Математические модели прямых методов и их погрешностей приведены в МИ 1953-88.

Математические модели косвенных методов и их погрешностей приведены в обязательном Приложении 2.

Примеры вычислений массы продукта и оценки погрешностей методов приведены в справочном Приложении 3.

Примечание. Для внешнеторговых организаций при необходимости допускается рассчитывать массу в соответствии с положениями стандарта ИСО 91/1-82 и других международных документов, признанных в СССР .

3. ПОГРЕШНОСТИ МЕТОДОВ ИЗМЕРЕНИЯ

3.1. Пределы относительной погрешности методов измерения массы должны быть не более:

при прямом методе:

+/- 0,5% - при измерении массы нетто нефтепродуктов до 100 т, а также массы нетто битумов;

+/- 0,3% - при измерении массы нетто пластических смазок;

при объемно-массовом динамическом методе:

+/- 0,25% - при измерении массы брутто нефти;

+/- 0,35% - при измерении массы нетто нефти;

+/- 0,5% - при измерении массы нетто нефтепродуктов от 100 т и выше;

при объемно-массовом статическом методе:

+/- 0,5% - при измерении массы нетто нефти, нефтепродуктов от 100 т и выше, а также массы нетто битумов;

+/- 0,8% - при измерении массы нетто нефтепродуктов до 100 т и отработанных нефтепродуктов;

при гидростатическом методе:

+/- 0,5% - при измерении массы нетто нефти, нефтепродуктов от 100 т и выше;

+/- 0,8% - при измерении массы нетто нефтепродуктов до 100 т и отработанных нефтепродуктов.

Приложение 1

Справочное

ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В СТАНДАРТЕ, И ПОЯСНЕНИЯ К НИМ

Масса брутто - масса нефти и нефтепродуктов, показатели качества которых соответствуют требованиям нормативно-технической документации.

Масса балласта - общая масса воды, солей и механических примесей в нефти или масса воды в нефтепродуктах.

Масса нетто - разность масс брутто и массы балласта.

Приложение 2

Обязательное

МАТЕМАТИЧЕСКИЕ МОДЕЛИ КОСВЕННЫХ МЕТОДОВ ИЗМЕРЕНИЙ МАССЫ

И ИХ ПОГРЕШНОСТЕЙ

1. Модель объемно-массового динамического метода

, (1)

где m - масса продукта, кг ;

V - объем продукта, м3;

Плотность продукта, кг /м3;

Разность температур продукта при измерении плотности () и объема (), °С ;

Коэффициент объемного расширения продукта, 1/°С ;

Разность давлений при измерении объема () и плотности (), МПа;

Коэффициент сжимаемости от давления, 1/МПа.

1.1. Модель погрешности метода

, (2)

где - относительная погрешность измерения массы продукта, %;

Относительная погрешность измерения объема, %;

Относительная погрешность измерения плотности, %;

Абсолютная погрешность измерения разности температур , °С ;

Относительная погрешность центрального блока обработки и индикации данных, %.

2. Модель объемно-массового статического метода

, (3)

где , - объемы продукта, соответственно, в начале и конце товарной операции, определяемые по градуировочной таблице резервуара, м3;

Средние плотности продукта, соответственно, в начале и в конце товарной операции, кг /м3;

Коэффициент линейного расширения материала стенок резервуара, 1 °С ;

Разность температур стенок резервуара при измерении объема () и при градуировке (), °C.

2.1. Модель погрешности метода


, (4)

где H - уровень продукта, в емкости, м ;

Абсолютная погрешность измерения уровня наполнения продукта, м ;

Относительная погрешность градуировки резервуара, %.

3. Модель гидростатического метода

(5) или

, (6)

где ; - средние значения площади сечения резервуара, соответственно в начале и в конце товарной операции, м2 , определяемые как (V - объем продукта, м3, H - уровень наполнения емкости, м);

- среднее значение площади сечения части резервуара, из которой отпущен продукт, м2 ;

g - ускорение свободного падения, м/с2 ;

; - давление продукта в начале и в конце товарной операции, Па;

Разность давлений продукта в начале и в конце товарной операции, Па.

3.1. Модель погрешности метода

для формулы (5)

, (7)

для формулы (6) , (8)

где , - относительные погрешности измерения сечения резервуара, соответственно, в начале и в конце товарной операции, %;

Относительные погрешности измерения давлений, соответственно, в начале и в конце товарной операции, %;

Относительная погрешность измерения разности давлений , %;

Относительная погрешность измерения среднего значения площади сечения резервуара, из которой отпущен продукт, %.

4. Модели измерения массы нетто нефти

При применении объемно-массового метода измерения массы:

. (9)

При применении гидростатического метода измерений массы:

, (10)

где - масса нефти нетто, кг ;

Масса балласта, кг ;

Объемная доля воды в нефти, %;

Плотность воды, кг /м3;

Концентрация хлористых солей, кг /м3;

Нормированная массовая доля механических примесей в нефти, %.

4.1. Модели погрешности методов

для формулы (9)


, (11)

для формулы (10)

, (12)

где - абсолютная погрешность измерения плотности воды, кг /м3;

Абсолютная погрешность измерения содержания воды, % объемных ;

Абсолютная погрешность измерения концентрации хлористых солей, кг /м3.

Примечание. Погрешности измерения параметров , , , , , в моделях погрешностей методов не учитывают ввиду их малого влияния.

Приложение 3

Справочное

ПРИМЕРЫ ВЫЧИСЛЕНИЙ МАССЫ ПРОДУКТА И ОЦЕНКИ

ПОГРЕШНОСТЕЙ МЕТОДОВ

1. Объемно-массовый динамический метод

1.1. При применении объемно-массового динамического метода применяют следующие средства измерений:

турбинный счетчик с пределами допускаемых значений относительной погрешности (в дальнейшем погрешностью) ;

поточный плотномер с абсолютной погрешностью кг /м3;

термометры с абсолютной погрешностью °С ;

манометры класса I с верхним пределом диапазона измерения =10 МПа.

1.2. Измеренный объем продукта V = 687344 м3.

1.3. По результатам измерений за время прохождения объема вычисляют следующие параметры (средние арифметические значения):

температуру продукта при измерении объема = 32 °C;

давление при измерении объема = 5,4 МПа;

температуру продукта при измерении плотности = 30 °C;

давление при измерении плотности = 5,5 МПа;

плотность продукта = 781 кг/м3.

1.4. По справочникам определяют:

коэффициент объемного расширения продукта 1/°C;

коэффициент сжимаемости продукта от давления 1/МПа.

1.5. Массу прошедшего по трубопроводу продукта вычисляют по формуле (1)

1.6. Для определения погрешности метода вычисляют:

относительную погрешность измерения плотности по формуле

,

где - минимальное допускаемое в методике выполнения измерений (МВИ) значение плотности продукта;

абсолютную погрешность измерения разности температур

°С.

1.7. При определении погрешности метода учитывают, что она достигает максимума при максимально допускаемом превышении температуры над температурой , которое должно указываться в МВИ. Для примера принимаем, что в МВИ задано значение 10 °С.

1.8. Погрешность объемно-массового динамического метода измерения вычисляют по формуле (2) Приложения 2:

2. Объемно-массовый статический метод

2.1. При применении объемно-массового статического метода использованы следующие средства измерений:

стальной вертикальный цилиндрический резервуар вместимостью10000 м3, отградуированный с относительной погрешностью при температуре = 18 °С ;

ареометр для нефти (нефтеденсиметр ) с абсолютной погрешностью = 0,5 кг/м3;

термометры с абсолютной погрешностью °С.

Обработка результатов измерений производится на ЭВМ с относительной погрешностью .

2.2. При измерениях перед отпуском продукта получены следующие результаты:

высота налива продукта = 11,574 м;

плотность продукта из объединенной пробы в лабораторных условиях при температуре = 22 °С , = 787 кг/м3;

средняя температура продукта в резервуаре = 34 °C;

температура окружающего воздуха = -12 °С.

2.3. При измерениях после отпуска продукта получены следующие результаты:

высота налива продукта = 1,391 м;

плотность продукта из объединенной пробы в лабораторных условиях при температуре = 22 °С , = 781 кг/м3;

средняя температура продукта в резервуаре = 32 °C;

температура окружающего воздуха = -18 °С.

2.4. По справочникам определяют:

коэффициент линейного расширения материала стенок резервуара

1/°С ;

коэффициент объемного расширения продукта

1/°С.

2.5. По градуировочной таблице резервуара определяют:

объем продукта в резервуаре перед отпуском = 10673,7 м3;

объем продукта в резервуаре после отпуска = 1108,2 м3.

2.6. Вычисляют температуру стенок резервуара:

перед отпуском продукта

°С,

после отпуска продукта

°С.

2.7. Массу отпущенного продукта определяют по формуле (3) Приложения 2:

2.8. Для определения погрешности метода вычисляют:

относительную погрешность измерения плотности продукта

;

абсолютную погрешность измерения разности температур:

°С.

2.9. При определении погрешности метода учитывают, что она достигает максимума при максимальном для данного резервуара значения , указанном в паспорте на резервуар, а также при минимальной разности и максимальном превышении температуры над температурой , которые должны указываться в МВИ.

2.9.1. В рассматриваемом случае, например, используют резервуар с = 12 м и заданы = 8 м и следовательно = 4 м и = -10 °С.

2.9.2. По градуировочной таблице резервуара определяют объемы, соответствующие уровням п. 2.9.1:

11112,1 м3, = 3566,4 м3 и = 7545,7 м3.

2.9.3. Для расчета погрешности определяют значения

и

.

Примечание. В данных расчетах принято допущение о равенстве плотности продукта в резервуаре до начала и после окончания отпуска и плотности отпущенного продукта, что существенно не влияет на оценку погрешности.

2.10. Погрешность объемно-массового статического метода вычисляют по формуле (4) Приложения 2:


3. Гидростатический метод

3.1. При применении гидростатического метода используют следующие средства измерений:

стальной вертикальный цилиндрический резервуар вместимостью 10000 м3, отградуированный с относительной погрешностью при температуре = 18 °С ;

уровнемер с абсолютной погрешностью мм ;

дифференциальный манометр с относительной погрешностью .

Обработка результатов измерений производится на ЭВМ с относительной погрешностью .

3.2. При измерениях получены результаты:

высота налива продукта перед отпуском = 10,972 м;

дифференциальное давление перед отпуском = 86100 Па;

высота налива продукта после отпуска = 1,353 м;

дифференциальное давление после отпуска = 11800 Па.

3.3. По справочнику определяют значение ускорения свободного падения для данной местности g = 9,815 м/с2 .

3.4. По градировочной таблице резервуара определяют:

объем продукта перед отпуском = 10581,4 м3;

объем продукта после отпуска = 1297,1 м3.

3.5. Вычисляются следующие значения величин:

при применении для расчета формулы (5) Приложения 2 среднее значение площади сечения резервуара перед отпуском продукта

и после отпуска продукта

;

при применении для расчета формулы (6) Приложения 2 среднее значение площади сечения части резервуара, из которого отпущен продукт

разность давлений продукта в начале и в конце товарной операции с учетом изменившегося столба воздуха в резервуаре

где - плотность воздуха, кг /м3.

Цель работы: изучение методов определения плотности нефти, определение плотности нефти при температуре опыта и пересчете результатов на плотность при температуре 20ºС и 15ºС. ГОСТ 3900-85 «Нефть и нефтепродукты. Методы определения плотности», ГОСТ Р 8599-2003 «Плотность и объем нефти. Таблицы коэффициентов пересчета плотности и массы».

I. Теоретическая часть

Плотность – не основной параметр для оценки качества нефтепродуктов и лишь в известной степени характеризует их состав, однако она имеет большое практическое значение при определении качества нефтей и нефтепродуктов по объему при учетно-расчетных операциях. Учет количества в объемных единицах не совсем удобен, так как объем жидкости зависит от температуры, которая может изменяться в широких пределах. Зная объем и плотность, можно при отпуске, приме и учете нефти и нефтепродуктов выражать их количество в массовых единицах.

Плотность входит составной частью в различные константы, характеризующие химический состав и свойства нефтепродуктов. Для некоторых продуктов – топлив для реактивных двигателей, мазутов, газотурбинных топлив, осветительных керосинов, бензинов-растворителей, авиационных и дизельных масел – плотность является нормируемым показателем.

Плотностью называется количество покоящейся массы, заключенной в единице объема.

Единицей плотности в системе СИ является кг/м 3 .

Удельный вес нефти - отношение веса нефти к его объему. Единицей удельного веса в системе СИ является Н/м 3 .

Плотность вещества и его удельный вес часто численно совпадают, однако нельзя забывать, что физический смысл этих величин различен.

В исследовательской практике определяется относительная плотность нефтепродуктов.

Относительной плотностью называется отношение плотности нефти или нефтепродукта при 20°С к плотности дистиллированной воды (эталонного вещества) при 4°С, то есть отношение массы нефти или нефтепродукта при 20°С к массе такого же объема дистиллированной воды при 4°С. Относительную плотность обозначают .

Плотность нефти и нефтепродукта зависит от температуры. С повышением температуры их плотность снижается. Зависимость плотности от температуры основана на линейном законе, выраженном формулой Менделеева:

,

где - относительная плотность при температуре анализа;

Относительная плотность при 20°С;

γ - средняя температурная поправка плотности на 1°С;

t - температура, при которой проводится анализ, °С.

Температурную поправку рассчитывают по формуле:

Значения поправки γ приведены в таблице 1.

Таблица 1

Средние температурные поправки γ плотности на 1°С для нефтей и

нефтепродуктов

Плотность Поправка γ Плотность Поправка γ
0,6900-0,6999 0,000910 0,8500-0,8599 0,000699
0,7000-0,7099 0,000897 0,8600-08699, 0,000686
0,7100-0,7199 0,000884 0,8700-0,8799 0,000673
0,7200-0,7299 0,000870 0,8800-0,8899 0,000660
0,7300-0,7399 0,000857 0,8900-0,8999 0,000647
0,7400-0,7499 0,000844 0,9000-0,9099 0,000633
0,7500-0,7599 0,000831 0,9100-0,9199 0,000620
0,7600-0,7699 0,000818 0,9200-0,9299 0,000607
0,7700-0,7779 0,000805 0,9300-0,9399 0,000594
0,7800-0,7899 0,000792 0,9400-0,9499 0,000581
0,7900-0,7999 0,000778 0,9500-0,9599 0,000567
0,8000-0,8099 0,000765 0,9600-0,9699 0,000554
0,8100-0,8199 0,000752 0,9700-0,9799 0,000541
0,8200-0,8299 0,000738 0,9800-0,9899 0,000528
0,8300-0,8399 0,000725 0,9900-1,0000 0,000515
0,8400-0,8499 0,000712

Плотность ρ t нефтепродуктов в пределах температуры t = 20-250 °С можно определить по формуле Мановяна:

В США и Англии относительную плотность определяют при одинаковой температуре анализируемого вещества и воды, равной 15,5556 °С (60 °F). Относительную плотность при 20 °С в этом случае рассчитывают по формуле:

.

Экспериментально плотность нефти (нефтепродукта) определяют одним из трех стандартных методов: ареометром (нефтеденсиметром), гидростатическими весами Вестфаля-Мора (рис. 1), и пикнометром (рис. 2). Из них наиболее быстрым является ареометрический метод, а наиболее точным – пикнометрический. Преимуществом пикнометрического метода также является использование сравнительно малых количеств анализируемой пробы. Определение относительной плотности нефти и нефтепродуктов производится пикнометрическим методом с использованием пикнометров типа ПЖ-1, ПЖ-2, ПЖ-3 (ГОСТ 22521) по ГОСТ 3900-85. Метод основан на определении отношения массы испытуемого продукта к массе воды, взятой в том же объеме и при той же температуре. Так как за единицу массы принимается масса 1 см 3 воды при температуре 4ºС, то плотность, выраженная в г/см 3 , будет численно равна плотности по отношению к воде при температуре 4ºС ().

Плотность большинства нефтей в среднем колеблется от 0,8 до 0,9 г/см 3 . Высоковязкие смолистые нефти имеют плотность близкую к единице. На величину плотности нефти оказывает существенное влияние наличие растворенных газов, фракционный состав нефти и количество растворенных веществ в ней. Плотности последовательных фракций нефти плавно увеличиваются. Плотность узких фракций нефти зависит также от химического состава. Для углеводородов средних фракций нефти с одинаковым числом углеродных атомов плотность возрастает для представителей разных классов в следующем порядке: нормальные алканы → нормальные алкены → изоалканы → изоалкены → алкилциклопентаны → алкилциклогексаны → алкилбензолы → алкилнафталины.

Для бензиновых фракций плотность заметно увеличивается с увеличением количества бензола и его гомологов. Для некоторых нефтепродуктов плотность является нормируемым показателем качества, она входит также составной частью в различные комбинированные константы и расчетные формулы.


Рис. 1. Весы Вестфаля-Мора:

2. термометр;

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
(МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION
(ISC)

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-97 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила, рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт расходометрии» (ФГУП ВНИИР)

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТЫ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 36 от 26 января 2009 г.)

Краткое наименование страны по МК(ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Азербайджан

А Z

Азстандарт

Армения

АМ

Минторгэкономразвития

Беларусь

В Y

Госстандарт Республики Беларусь

Грузия

G Е

Грузстандарт

Казахстан

К Z

Госстандарт Республики Казахстан

Кыргызстан

К G

Кыргызстандарт

Молдова

Молдова-Стандарт

Российская Федерация

Федеральное агентство по техническому регулированию и метрологии

Таджикистан

Таджикстандарт

Узбекистан

Узстандарт

Украина

Госпотребстандарт Украины

4 Приказом Федерального агентства по техническому регулированию и метрологии от 18 июня 2009 г. № 195-ст рекомендации по межгосударственной стандартизации РМГ 86-2009 введены в действие в качестве рекомендаций по метрологии Российской Федерации с 1 января 2010 г.

5 Настоящие рекомендации разработаны на основе рекомендации по метрологии Российской Федерации МИ 2951-2005 «Государственная система обеспечения единства измерений. Масса нефти. Методика выполнения измерений в вертикальных резервуарах в системе магистрального нефтепроводного транспорта»

6 ВВЕДЕНЫ ВПЕРВЫЕ

Информация о введении в действие (прекращении действия) настоящих рекомендаций публикуется в информационном указателе «Национальные стандарты».

Информация об изменениях к настоящим рекомендациям публикуется в информационном указателе «Национальные стандарты», а текст изменений - в информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящих рекомендаций соответствующая информация будет опубликована в информационном указателе «Национальные стандарты»

Государственная система обеспечения единства измерений

МАССА НЕФТИ
МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ В ВЕРТИКАЛЬНЫХ РЕЗЕРВУАРАХ
В СИСТЕМЕ МАГИСТРАЛЬНОГО НЕФТЕПРОВОДНОГО ТРАНСПОРТА

Основные положения

State system for ensuring the uniformity of measurements. Mass of petroleum.
Measurement procedure in vertical tanks in the main petrowire systems. Basic propositions

Д ат а введения - 2010-01-01

1 Область применения

1.1 Настоящие рекомендации распространяются на вертикальные стальные цилиндрические резервуары типов РВС, РВСП, РВСПК и на железобетонные резервуары цилиндрической и прямоугольной формы типов ЖБР, ЖБРП, ЖБРПК (далее - резервуары) номинальной вместимостью до 50000 м 3 .

1.2 Рекомендации устанавливают методику выполнения измерений массы товарной нефти (далее - нефть) в резервуарах при проведении учетных операций в системе магистрального нефтепроводного транспорта ОАО «АК «Транснефть», включая прием нефти от грузоотправителей и сдачу ее грузополучателям.

2 Нормативные ссылки

6.9 Средства измерений, применяемые при выполнении измерений, должны быть сертифицированы (аттестованы, внесены в государственный реестр) в стране применения и признаны странами - участниками приемо-сдаточных операций.

6.10 Применяемые средства измерений должны иметь действительные свидетельства о поверке, оформленные в соответствии с требованиями соответствующих методик поверки, и (или) поверительные клейма.

7 Требования к квалификации операторов

К выполнению измерений допускаются лица, отвечающие следующим требованиям:

Прошедшие обучение, инструктаж на рабочем месте и стажировку по специальности, получившие квалификацию товарного оператора не ниже четвертого разряда и имеющие допуск к самостоятельной работе;

8 Требования безопасности

8.1 Резервуары (резервуарные парки), входящие в состав нефтеперекачивающих станций и перевалочных нефтебаз, относятся к опасным производственным объектам.

8.2 При выполнении измерений массы нефти в резервуарах возможно наличие следующих опасных и вредных производственных факторов:

Образование взрывоопасной среды.

Смесь паров нефти с воздухом по степени взрывоопасности относится к категории II А, группе Т3 («Правила устройства электроустановок»).

Загазованность воздуха рабочей зоны.

По степени воздействия на организм человека (токсичности) нефть, в зависимости от содержания в ней сероводорода, относится к 3-му классу опасности вредного вещества («умеренно опасное») или 2-му классу опасности («высокоопасное») по ГОСТ 12.1.007 .

8.3 Для обеспечения взрывобезопасности при выполнении измерений применяемые средства измерений и вспомогательные устройства, относящиеся к категории электрооборудования, должны быть сертифицированы на соответствие требованиям к взрывобезопасности.

Переносные средства измерений и технические средства должны быть изготовлены из материалов, исключающих возможность образования искр при контакте с конструктивными элементами резервуаров и их оборудования.

8.4 На территории резервуарных парков по графику, утвержденному руководителем структурного подразделения, в установленных точках следует проводить контроль соответствия воздуха рабочей зоны санитарно-гигиеническим требованиям ГОСТ 12.1.007 . Контроль проводят аттестованные работники с помощью переносных газоанализаторов.

8.5 В качестве переносных светильников следует применять аккумуляторные фонари напряжением не более 12 В во взрывобезопасном исполнении, включение и выключение которых должно выполняться вне территории обвалования.

8.6 К выполнению измерений массы нефти в резервуарах допускают лиц не моложе 18 лет, не имеющих медицинских противопоказаний к работе на опасных производственных объектах, отвечающих установленным квалификационным требованиям, прошедших обучение и проверку знаний норм и правил безопасности труда.

8.7 Допущенные к выполнению измерений операторы должны знать схемы коммуникаций резервуарного парка (резервуара), требования технологических карт эксплуатации резервуаров и уметь в нормативные сроки безошибочно выполнять необходимые переключения. Схемы и технологические карты эксплуатации резервуаров должны находиться на рабочих местах операторов.

8.8 Операторы должны иметь одежду и обувь, изготовленные из материалов, не накапливающих статическое электричество. Обувь не должна иметь металлических накладок и гвоздей. Ручные измерения уровня нефти и отбор проб, сопряженные с контактом с нефтью, выполняют в резиновых перчатках.

8.9 При открытии измерительных («замерных») люков, ручном отборе проб и измерениях уровня нефти оператор должен находиться с наветренной стороны (стоять спиной к ветру), а если это невозможно в силу конструктивных особенностей размещения измерительного люка - стоять боком к ветру. Работы следует проводить в присутствии наблюдающего (дублера).

Операторам запрещается:

Находиться на крыше (площадках) резервуара, проводить измерения уровня нефти и отбор проб вручную во время грозы;

Находиться во время закачки и откачки нефти из резервуара на плавающей крыше.

8.10 В экстремальных условиях (туман, обледенение и др.) отбор проб, измерения уровня ручным способом на высоте допускается проводить при применении дополнительных мер безопасности (дополнительного освещения, песка для устранения скольжения и других необходимых мер), которые предусматриваются в инструкции по охране труда для операторов при работе в резервуарном парке.

8.11 Для безопасной доставки проб нефти с резервуара в лабораторию их следует переносить в специальных тканевых сумках, надеваемых через плечо.

8.12 Для операторов, выполняющих измерения в соответствии с настоящими рекомендациями, начальником подразделения должна быть разработана инструкция по охране труда, которую утверждает руководитель структурного подразделения. Рекомендации должны быть доведены до исполнителей под роспись.

9 Условия измерений

9.1 При выполнении измерений соблюдают следующие условия:

9.1.1 Отношение максимального (Н макс ) и минимального (Н мин ) уровня нефти наполненного и опорожненного резервуара удовлетворяет следующим требованиям:

При пределах относительной погрешности определения вместимости резервуара ± 0,1 %;

При пределах относительной погрешности определения вместимости резервуара ± 0,2 %.

9.1.2 Нефть по степени подготовки должна соответствовать требованиям .

9.2 В случае невыполнения указанных условий оператор должен сообщить о нарушениях начальнику ПСП.

10 Подготовка к выполнению измерений

При подготовке к выполнению измерений:

Обеспечивают отстой нефти после заполнения резервуара продолжительностью не менее двух часов;

Проверяют:

исправность, готовность к работе системы (средств) измерений и технических средств, чистоту сосуда для пробы;

целостность пломб и клейм.

11 Выполнение измерений

11.1 Выполнение измерений в резервуаре, не оснащенном системой измерений количества нефти

11.1.1 Измерения уровня нефти и подтоварной воды в резервуаре

11.1.1.1 Уровень нефти измеряют уровнемерами, измерительными рулетками с грузом по ГОСТ 7502 или электронными рулетками.

Уровень подтоварной воды измеряют уровнемерами, измерительными рулетками при помощи водочувствительной ленты или пасты, электронными средствами измерений.

Уровень нефти и подтоварной воды в резервуарах допускается измерять другими техническими средствами, сертифицированными для выполнения данных операций.

11.1.1.2 Измерения уровня нефти измерительной рулеткой

Ленту рулетки до и после измерений протирают мягкой тряпкой насухо.

Проверяют базовую высоту резервуара как расстояние по вертикали от днища в точке касания груза измерительной рулетки до верхнего края измерительного люка или до риски направляющей планки измерительного люка.

Полученный результат сравнивают с известным (паспортным) значением базовой высоты, нанесенной на резервуаре.

Если базовая высота (Н б ) отличается от полученного результата не более чем на 0,1 % Н б , то измерение уровня нефти рулеткой осуществляют в следующей последовательности:

Опускают ленту рулетки с грузом медленно до касания лотом днища или опорной плиты (при наличии), не допуская отклонения лота от вертикального положения, не задевая за внутреннее оборудование, сохраняя спокойное состояние поверхности нефти и не допуская волн.

Затем рулетку поднимают строго вертикально, не допуская смещения в сторону, и берут отсчет на месте смоченной части ленты нефтью.

Измерения уровня жидкости в каждом резервуаре проводят дважды. Если результаты измерений отличаются не более чем на 1 мм, то в качестве результата измерений уровня принимают их среднее значение.

11.1.1.3 Если базовая высота (Н б ) отличается от полученного результата более чем на 0,1 % Н б , выясняют причину изменения базовой высоты и устраняют ее в кратчайшие сроки. Базовую высоту резервуара измеряют не менее чем один раз в год.

На период, необходимый для выяснения и устранения причин изменения базовой высоты, разрешается измерения уровня нефти проводить по высоте пустоты резервуара.

11.1.1.4 Определение уровня нефти по высоте пустоты резервуара с помощью измерительной рулетки

Опускают ленту рулетки с грузом медленно до погружения груза в нефть, не допуская отклонения лота от вертикального положения, не задевая за внутреннее оборудование, сохраняя спокойное состояние поверхности нефти и не допуская волн.

Первый отсчет (верхний) берут по рулетке на уровне риски планки измерительного люка. Затем рулетку поднимают строго вертикально, не допуская смещения в сторону, и берут отсчет на месте смоченной части ленты нефтью (нижний отсчет).

Отсчет по ленте рулетки проводят сразу после появления смоченной части ленты рулетки над измерительным люком с точностью до 1 мм.

Измерения высоты пустоты в каждом резервуаре проводят дважды. Если результаты измерений отличаются не более чем на 1 мм, то в качестве результата измерений уровня принимают их среднее значение.

Если полученное расхождение измерений составляет более 1 мм, то измерения повторяют еще дважды и берут среднее значение из трех наиболее близких измерений.

Высоту пустоты находят как разность верхнего и нижнего отсчетов по рулетке.

Уровень нефти в резервуаре определяют вычитанием полученного значения высоты пустоты из паспортного значения базовой высоты резервуара.

При определении уровня жидкости в резервуарах с плавающей крышей по «высоте пустоты» резервуара учитывают поправку D Н б , зависящую от разноса точек отсчета базовой высоты резервуара и уровня нефти, а также от конструктивных особенностей днища резервуара. Поправку D Н б рассчитывают по формуле

(1)

где Н ж - уровень жидкости в резервуаре, измеренный с использованием измерительного люка на крыше резервуара;

Уровень жидкости в резервуаре, измеренный с использованием измерительного люка на верхней площадке направляющей колонны.

11.1.1.5 Измерения уровня подтоварной воды в резервуарах измерительной рулеткой Измерения уровня подтоварной воды в резервуарах проводят измерительной рулеткой при помощи водочувствительной ленты или пасты в следующей последовательности:

Водочувствительную ленту в натянутом виде прикрепляют к поверхности лота с двух противоположных сторон.

Водочувствительную пасту наносят тонким слоем 0,2-0,3 мм на поверхность лота полосками с двух противоположных сторон.

Рулетку с лотом с водочувствительной пастой или с прикрепленной водочувствительной лентой при определении уровня подтоварной воды выдерживают в резервуаре неподвижно в течение 2-3 мин, когда водочувствительный слой полностью растворится и грань между слоями воды и нефти будет резко выделена.

Измерения уровня подтоварной воды в резервуаре проводят дважды. Если результаты измерений отличаются не более чем на 1 мм, то в качестве результата измерений уровня принимают их среднее значение.

Измерения уровня подтоварной воды повторяют, если на ленте или пасте она обозначена нечетко, косой линией или на неодинаковой высоте с обеих сторон, что указывает на наклонное положение лота при выполнении измерений.

Размытая грань является следствием отсутствия резкой границы раздела между водой и нефтью и свидетельствует о наличии водоэмульсионного слоя. В этом случае измерения повторяют после отстоя и расслоения эмульсии.

11.1.2 Определение фактического объема нефти в резервуаре

11.1.2.1 Общий объем нефти в резервуаре и объем подтоварной воды определяют по градуировочной таблице на конкретный резервуар.

Фактический объем нефти в резервуаре вычисляют по формуле

V н = V 0 + (2a ст + a s )(t ст - 20)], (2)

где V 0 - объем нефти в резервуаре по градуировочной таблице, м 3 ;

a ст - температурный коэффициент линейного расширения материала стенки резервуара, значение которого принимают равным 12,5 × 10 -6 1/°С;

a s - температурный коэффициент линейного расширения материала средства измерений уровня, значение которого при измерениях уровня рулеткой из нержавеющей стали a s принимают равным 12,5 × 10 -6 1/°С. При измерениях уровня нефти рулеткой по высоте пустоты резервуара, а также при измерениях уровня нефти уровнемерами принимают a s = 0;

t ст - температура стенки резервуара, принимаемая равной температуре нефти в резервуаре.

Объем нефти в резервуаре по градуировочной таблице, м 3 , вычисляют по формуле

V 0 = V ж - V в , (3)

где V ж - объем жидкости (нефть и подтоварная вода), определяемый по градуировочной таблице резервуара, составленной при температуре 20 °С по ГОСТ 8.570 , м 3 ;

V в - объем подтоварной воды в резервуаре, определяемый по градуировочной таблице резервуара, составленной при температуре 20 °С по ГОСТ 8.570 , м 3 .

11.1.2.2 При выполнении измерений массы нефти в резервуарах с понтоном или плавающей крышей учитывают поправку на изменение уровня жидкости D V ж , м 3 , обусловленное влиянием понтона или плавающей крыши.

Соответственно, при определении объема нефти в указанных резервуарах используют объем жидкости с поправкой , определяемый по формуле

(4)

Для резервуаров с понтоном поправку на изменение объема жидкости вычисляют по формуле

(5)

где М понт - масса понтона, взятая из паспорта резервуара, кг;

r изм - плотность нефти в резервуаре в условиях измерения объема нефти, кг/м 3 ;

r град - плотность жидкости, применяемая в расчетах вместимости резервуара при его градуировке, кг/м 3 ; значение r град должно быть приведено в градуировочной таблице на резервуар.

Для резервуаров с плавающей крышей поправку на изменение объема жидкости вычисляют по формуле

где D h - поправка на изменение уровня жидкости, мм;

D п.н - диаметр плавающей крыши, мм;

D 1 ,..., D п - диаметры отверстий в плавающей крыше, мм;

N - число отверстий.

Значение p принимают равным 3,1416.

Значения h град , D п.н , D 1 ,..., D п берут из протокола градуировки резервуара.

Поправку на изменение уровня жидкости, мм, вычисляют по формуле

D h = h изм - h град . (7)

где h изм - расстояние по вертикали от риски измерительного люка на плавающей крыше до уровня нефти при условиях измерения уровня, мм;

h град - расстояние по вертикали от риски измерительного люка на плавающей крыше до уровня нефти, учитываемое при градуировке резервуара, мм;

11.1.2.3 Значение объема нефти в резервуаре, приведенное к стандартным условиям, вычисляют:

Для стандартной температуры 15 °С (V н 15 ) - по формуле

V н 15 = V н × CTL v , (8)

Для стандартной температуры 20 °С (V н 20 ) - по формуле

(9)

где CTL v и CTL 20-15 - поправочные коэффициенты, вычисляемые по формулам:

CTL v = ехр[-b 15 × D t v (1 + 0,8b 15 × D t v ] (10)

CTL 20-15 = ехр[-b 15 × 5(1 + 0,8b 15 × 5], (11)

где - коэффициент объемного расширения нефти при температуре 15 °С (r 15 - значение плотности нефти при температуре 15 °С);

D t v = t v - 15 - отклонение температуры нефти при измерении объема нефти от стандартной температуры 15 °С.

11.1.3 Определение плотности нефти в резервуаре

Плотность нефти измеряют плотномером в соответствии с инструкцией по эксплуатации на данный тип или по ГОСТ 3900 с учетом , или по с учетом систематической погрешности, определенной по по объединенной пробе нефти, отобранной из резервуара в соответствии с ГОСТ 2517 . Значения плотности приводят к температуре измерения объема нефти в резервуаре и к стандартным условиям в соответствии с или .

11.1.4 Определение температуры нефти в резервуаре

Среднюю температуру нефти в резервуаре определяют с помощью стационарных преобразователей температуры или преобразователя температуры в составе электронной рулетки в соответствии с требованиями инструкции по эксплуатации одновременно с измерениями уровня или вручную путем ее измерений при отборе точечных проб.

При отборе объединенной пробы стационарными пробоотборниками в один прием по ГОСТ 2517 определяют среднюю температуру нефти путем измерений температуры этой пробы термометром.

При отборе точечных проб температуру нефти в пробе определяют в течение 1-3 мин после отбора пробы, при этом переносной пробоотборник выдерживают на уровне отбираемой пробы в течение не менее пяти минут. Термометр погружают в нефть на глубину, указанную в техническом паспорте на данный термометр, и выдерживают в пробе до принятия столбиком ртути постоянного положения.

Среднюю температуру нефти рассчитывают по температуре точечных проб, используя соотношение для составления объединенной пробы из точечных по ГОСТ 2517 .

11.1.5 Определение массы брутто нефти в резервуаре

Массу брутто нефти в тоннах вычисляют по формуле

М бр = V н × r н × 10 -3 , (12)

где r н - плотность нефти при температуре измерений объема в резервуаре, кг/м 3 ;

V н - фактический объем нефти в резервуаре, м 3 , вычисленный по формуле ().

11.1.6 Определение массы брутто нефти при откачке из резервуара

При откачке нефти из резервуара массу сданной нефти определяют как разность первоначальной массы и массы остатка.

Массу сданной нефти М сд вычисляют по формуле

М сд = М н 1 - М н 2 , (13)

где М н 1 - масса нефти до начала откачки, вычисленная по формуле (), т;

М н 2 - масса остатка нефти, вычисленная после откачки нефти из резервуара по формуле (), т.

11.1.7 Определение массы брутто нефти при закачке нефти в резервуар

При закачке нефти в резервуар массу принятой нефти М пр вычисляют по формуле

М пр = М бр 2 - М бр 1 . (14)

где М бр 1 - масса нефти до начала закачки нефти в резервуар, вычисляемая по формуле (), т;

М бр 2 - масса остатка нефти, вычисляемая по окончании процесса закачки по формуле (), т.

11.1.8 Определение массы нетто нефти в резервуаре

Массу нетто нефти М н , т, вычисляют как разность массы брутто нефти М , т, и массы балласта т, т, по формуле

(15)

где W в - массовая доля воды в нефти, %;

W м.п - массовая доля механических примесей в нефти, %;

W х.с - массовая доля хлористых солей в нефти, %, вычисляемая по формуле

где j х.с - концентрация хлористых солей в нефти, мг/дм 3 ;

r v - плотность нефти при условиях измерений объема нефти, кг/м 3 .

Если измеряют не массовую, а объемную долю воды в нефти, то массовую долю вычисляют по формуле

где j в - объемная доля воды в нефти, %;

r в - плотность воды, кг/м 3 (принимают равной 1000 кг/м 3).

11.2 При автоматизированных измерениях массы нефти в мерах вместимости уровень нефти измеряют уровнемером, входящим в состав автоматизированной системы учета. Плотность нефти определяют по каналу измерений плотности АСУ или по объединенной пробе нефти, отобранной по ГОСТ 2517 . Температуру нефти измеряют автоматически, используя канал измерений температуры автоматизированной системы учета.

12 Обработка результатов измерений

12.1 При применении системы измерений количества нефти обработка результатов измерений и необходимые расчеты объема и массы нефти проводятся системой обработки информации автоматически (с учетом данных, введенных оператором вручную). Допускается проводить обработку результатов вручную.

12.2 Алгоритмы и программы обработки данных результатов измерений должны быть аттестованы в порядке, установленном .

13 Оформление результатов измерений

13.1 Протоколы измерений, выполненных измерительными компонентами системы измерений количества нефти, хранят в распечатанном виде в деле. Форма протоколов - согласно установленной в компьютерной программе системы.

13.2 Результаты измерений, выполненных переносными средствами измерений, фиксируют в журнале регистрации результатов измерений, формы которых приведены в приложении .

13.3 На основании журналов регистрации результатов измерений оформляют акт приема-сдачи нефти.

14 Обеспечение требований к погрешности измерений

14.1 Средства измерений, применяемые при измерениях, должны иметь сертификат об утверждении типа.

14.2 Средства измерений, применяемые при измерениях, должны быть поверены. Периодичность поверки - не реже одного раза в год.

14.3 Периодическую поверку резервуаров проводят не реже одного раза в пять лет.

Формы журналов регистрации результатов измерений массы нефти в вертикальном резервуаре

Таблица А.1 - Форма журнала для резервуаров типов РВС, ЖБР, ЖБРП

Номер п.п.

Дата

Время

Проверка базовой высоты

Температура нефти в резервуаре, °С

Уровень, мм

Объем нефти по градуировочной таблице, м 3

Плотность нефти, кг/м 3 , приведенная

Н б.изм , мм

d Н б.изм , мм

жидкости

подтоварной воды

к условиям измерения объема

Окончание таблицы А.1

Масса брутто, т

Масса нетто, т

принятой в резервуар

сданной из резервуара

W м.в

W м.п

W х.с

принятой в резервуар

сданной из резервуара

Таблица А.2 - Форма журнала для резервуаров типов РВСП, РВСПК, ЖБРПК

Номер п.п.

Дата

Время

Проверка базовой высоты

Температура нефти в резервуаре, °С

Уровень, мм

Объем нефти по градуировочной таблице, м 3

Плотность нефти, кг/м 3 , приведенная

Определение поправки

Н б.изм , мм

d Н б.изм , мм

жидкости

подтоварной воды

к условиям измерения объема

к стандартной температуре (указать)

D h

D V

Окончание таблицы А.2

Объем нефти с учетом поправки, м 3

Масса брутто, т

Значения показателей балласта

Масса нетто, т

Фамилия, инициалы оператора, личная подпись

в резервуаре на текущий момент

принятой в резервуар

сданной из резервуара

W м.в

W м.п

W х.с

принятой в резервуар

сданной из резервуара

Приложение Б
(справочное)

Пример выполнения измерений массы нефти в резервуаре

Для примера выбран резервуар типа РВСПК-50000, при этом измерения уровня жидкости и подтоварной воды выполняют измерительной рулеткой с грузом, а измерения температуры нефти в резервуаре - стационарной многоточечной системой.

Б.1 Измерение уровня нефти и подтоварной воды

Б.1.1 Проверка базовой высоты резервуара

Результат измерения Н изм = 20629 мм.

Значение базовой высоты, приведенное в градуировочной таблице резервуара Н б = 20634 мм.

Относительное отклонение полученного результата измерения не превышает 0,1 % от значения базовой высоты, приведенного в градуировочной таблице резервуара.

Б.1.2 Определение уровня жидкости в резервуаре

d H 1 , d H 2 - относительные погрешности измерений уровней нефти в резервуаре до отпуска нефти из резервуара и после отпуска нефти из резервуара соответственно, %;

D Т v 1 , D Т r 1 t v 1 , t r 1 до отпуска нефти из резервуара, °С;

D Т v 2 , D Т r 2 - абсолютные погрешности определений температур нефти в резервуаре t v 2 , t r 2 после отпуска нефти из резервуара, °С;

G 1 , G 2 - коэффициенты, вычисляют по формулам:

(В.2)

где b - коэффициент объемного расширения нефти 1/°С;

t v 1 , t v 2 - температуры нефти при измерении ее объема до отпуска нефти из резервуара и после отпуска нефти из резервуара, соответственно, °С;

t r 1 , t r 2 - температуры нефти при измерении ее плотности до отпуска нефти из резервуара и после отпуска нефти из резервуара, соответственно, °С.

Относительные погрешности измерений уровней нефти в резервуаре d H 1 , d H 2 , %, вычисляют по формулам:

(В.3)

где - абсолютная погрешность измерений уровней нефти, мм;

Значения уровней нефти в резервуаре, измеренных до отпуска нефти из резервуара и после отпуска нефти из резервуара, соответственно, мм.

Пределы относительной погрешности измерений массы нетто нефти в процентах вычисляют по формуле

(В.4)

где D W м.в - абсолютная погрешность измерения массовой доли воды в нефти, %;

D W м.п - абсолютная погрешность измерения массовой доли механических примесей в нефти, %;

D W х.с - абсолютная погрешность измерения массовой доли хлористых солей в нефти, %. Абсолютные погрешности измерений массовых долей воды, механических примесей и хлористых солей в нефти вычислены в соответствии с приложением Г.

Приложение Г
(обязательное)

Порядок расчета погрешностей определений в лаборатории массовых долей воды, механических примесей и хлористых солей

Абсолютные погрешности определений массовых долей воды и механических примесей, %, вычисляют в соответствии с . Для доверительной вероятности Р = 0,95 и двух измерений соответствующего показателя качества нефти абсолютную погрешность его измерений вычисляют по формуле ГОСТ 21534 Государственная система обеспечения единства измерений. Определение и применение показателей прецизионности методов испытаний нефтепродуктов

Ключевые слова : масса, масса брутто товарной нефти, масса балласта, масса нетто товарной нефти, методика выполнения измерений, объем, вертикальный резервуар, уровнемер, погрешность, уровень, градуировка, поверка, температура, плотность, давление

ГОСТ 26976-86

Группа Б09

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

НЕФТЬ И НЕФТЕПРОДУКТЫ

Методы измерения массы

Oil and petroleum products.
Methods of mass measurement

Дата введения 1987-01-01

РАЗРАБОТАН Миннефтепромом СССР, Госкомнефтепродуктом СССР и Минприбором СССР

ИСПОЛНИТЕЛИ

А.С. Апракин, А.Ш. Фатхутдинов, Ф.Ф. Хакимов, Л.И. Вдовыченко, В.С. Берсенев, В.А. Надеин, В.Г. Володин, Н.Н. Хазиев, Е.В. Золотов, А.Г. Иоффе, Б.К. Насокин, Б.М. Прохоров

ВНЕСЕН Министерством нефтяной промышленности СССР

Член Коллегии Ю.Н. Байдиков

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного комитета СССР по стандартам от 26 августа 1986 г. № 2495

ВЗАМЕН ГОСТ 8.370-80 и ГОСТ 8.378-80


Настоящий стандарт устанавливает методы измерения массы (далее - методы) нефти и жидких нефтепродуктов, а также битумов и пластических смазок (далее - продуктов).

Стандарт является основополагающим документом для разработки методик выполнения измерений.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Стандарт регламентирует методы измерений массы брутто и массы нетто продуктов.

Основным методом при поставках на экспорт и коммерческих операциях по нефти и нефтепродуктам, кроме мазутов, битумов и пластичных смазок, является динамический метод с применением счетчиков (расходомеров).

1. 2. Продукты должны соответствовать требованиям действующей нормативно-технической документации.

1.3. Термины, используемые в настоящем стандарте, и пояснения к ним приведены в справочном приложении 1.

2. МЕТОДЫ ИЗМЕРЕНИЙ

2.1. При проведении учетно-расчетных операций применяют прямые и косвенные методы.

2.2. При применении прямых методов измеряют массу продуктов с помощью весов, весовых дозаторов и устройств, массовых счетчиков или массовых расходомеров с интеграторами.

2.3. Косвенные методы подразделяют на объемно-массовый и гидростатический.

2.3.1. Объемно-массовый метод

2.3.1.1. При применении объемно-массового метода измеряют объем и плотность продукта при одинаковых или приведенных к одним условиях (температура и давление), определяют массу брутто продукта как произведение значений этих величин, а затем вычисляют массу нетто продукта.

2.3.1.2. Плотность продукта измеряют поточными плотномерами или ареометрами для нефти в объединенной пробе, а температуру продукта и давление при условиях измерения плотности и объема соответственно термометрами и манометрами.

2.3.1.3. Определение массы нетто продукта

При определении массы нетто продукта определяют массу балласта. Для этого измеряют содержание воды и концентрацию хлористых солей в нефти и рассчитывают их массу.

Массу механических примесей определяют, принимая среднюю массовую долю их в нефти по ГОСТ 9965-76.

Содержание воды в нефти и концентрацию хлористых солей измеряют, соответственно, поточными влагомерами и солемерами или определяют по результатам лабораторных анализов объединенной пробы нефти.

2.3.1.4. В зависимости от способа измерений объема продукта объемно-массовый метод подразделяют на динамический и статический.

Динамический метод применяют при измерении массы продукта непосредственно на потоке в нефтепродуктопроводах. При этом объем продукта измеряют счетчиками или преобразователями расхода с интеграторами.

Статический метод применяют при измерении массы продукта в градуированных емкостях (вертикальные и горизонтальные резервуары, транспортные емкости и т. п.).

Объем продукта в резервуарах определяют с помощью градуировочных таблиц резервуаров по значениям уровня наполнения, измеренным уровнемером, метроштоком или металлической измерительной рулеткой. В емкостях, градуированных на полную вместимость, контролируют уровень наполнения и определяют объем по паспортным данным.

2.3.2. Гидростатический метод

2.3.2.1. При применении гидростатического метода измеряют гидростатическое давление столба продукта, определяют среднюю площадь заполненной части резервуара и рассчитывают массу продукта как произведение значений этих величин, деленное на ускорение силы тяжести.

Массу отпущенного (принятого) продукта определяют двумя методами:

как разность масс, определенных в начале и в конце товарной операции вышеизложенным методом;

как произведение разности гидростатических давлений в начале и в конце товарной операции на среднюю площадь сечения части резервуара, из которого отпущен продукт, деленное на ускорение силы тяжести.

2.3.2.2. Гидростатическое давление столба продукта измеряют манометрическими приборами с учетом давления паров продукта.

2.3.2.3. Для определения средней площади сечения части резервуара металлической измерительной рулеткой или уровнемером измеряют уровни продукта в начале и в конце товарной операции и по данным градуировочной таблицы резервуара вычисляют соответствующие этим уровням средние площади сечения.

Допускается вместо измерения уровня измерять плотность продукта по п. 2.3.1.2 и определять:

уровень налива для определения средней площади сечения как частного от деления гидростатического давления на плотность;

объем нефти для определения массы балласта как частного от деления массы на плотность.

2.4. Математические модели прямых методов и их погрешностей приведены в ГОСТ 8.424-81.

Математические модели косвенных методов и их погрешностей приведены в обязательном приложении 2.

Примеры вычислений массы продукта и оценки погрешностей методов приведены в справочном приложении 3.

Примечание. Для внешнеторговых организаций при необходимости допускается рассчитывать массу в соответствии с положениями стандарта ИСО 91/1-82 и других международных документов, признанных в СССР.

3. ПОГРЕШНОСТИ МЕТОДОВ ИЗМЕРЕНИЯ

3.1. Пределы относительной погрешности методов измерения массы должны быть не более:

при прямом методе:

±0,5% - при измерении массы нетто нефтепродуктов до 100 т, а также массы нетто битумов;

±0,3% - при измерении массы нетто пластических смазок;

при объемно-массовом динамическом методе:

±0,25% - при измерении массы брутто нефти;

±0,35% - при измерении массы нетто нефти;

±0,5% - при измерении массы нетто нефтепродуктов от 100 т и выше;



при объемно-массовом статическом методе:

±0,5% - при измерении массы нетто нефти, нефтепродуктов от 100 т и выше, а также массы нетто битумов;

±0,8% - при измерении массы нетто нефтепродуктов до 100 т и отработанных нефтепродуктов;

при гидростатическом методе:

±0,5% - при измерении массы нетто нефти, нефтепродуктов от 100 т и выше;

±0,8% - при измерении массы нетто нефтепродуктов до 100 т и отработанных нефтепродуктов.

ПРИЛОЖЕНИЕ 1 (справочное). ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В СТАНДАРТЕ, И ПОЯСНЕНИЯ К НИМ

ПРИЛОЖЕНИЕ 1
Справочное

Масса брутто - масса нефти и нефтепродуктов, показатели качества которых соответствуют требованиям нормативно-технической документации.

Масса балласта - общая масса воды, солей и механических примесей в нефти или масса воды в нефтепродуктах.

Масса нетто - разность масс брутто и массы балласта.

ПРИЛОЖЕНИЕ 2 (обязательное). МАТЕМАТИЧЕСКИЕ МОДЕЛИ КОСВЕННЫХ МЕТОДОВ ИЗМЕРЕНИЙ МАССЫ И ИХ ПОГРЕШНОСТЕЙ

ПРИЛОЖЕНИЕ 2
Обязательное

1. Модель объемно-массового динамического метода

где - масса продукта, кг;

Объем продукта, м;

- плотность продукта, кг/м;

Разность температур продукта при измерении плотности () и объема (), °С;

Коэффициент объемного расширения продукта, 1/°С;

Разность давлений при измерении объема () и плотности (), МПа;

Коэффициент сжимаемости от давления, 1/МПа.

1.1. Модель погрешности метода

где - относительная погрешность измерения массы продукта, %;

Относительная погрешность измерения объема, %;

Относительная погрешность измерения плотности, %;

Абсолютная погрешность измерения разности температур °С;

Относительная погрешность центрального блока обработки и индикации данных, %.

2. Модель объемно-массового статического метода

где - объемы продукта, соответственно, в начале и конце товарной операции, определяемые по градуировочной таблице резервуара, м;

Средние плотности продукта, соответственно, в начале и в конце товарной операции, кг/м;

Коэффициент линейного расширения материала стенок резервуара, 1/°C;

Разность температур стенок резервуара при измерении объема () и при градуировке () °С.

2.1. Модель погрешности метода

где - уровень продукта в емкости, м;

Абсолютная погрешность измерения уровня наполнения продукта, м;

Относительная погрешность градуировки резервуара, %.

3. Модель гидростатического метода

где - средние значения площади сечения резервуара, соответственно, в начале и в конце товарной операции, м, определяемые

как (- объем продукта, м, - уровень наполнения емкости, м);

Среднее значение площади сечения части резервуара, на которой отпущен продукт, м;
- ускорение свободного падения, м/с;

Давление продукта в начале и в конце товарной операции, Па;

- разность давлений продукта в начале и в конце товарной операции, Па.

3.1. Модель погрешности метода

для формулы (5)

для формулы (6)

где - относительные погрешности измерения сечения резервуара, соответственно, в начале и в конце товарной операции, %;

Относительные погрешности измерения давлений, соответственно, в начале и в конце товарной операции, %;

Относительная погрешность измерения разности давлений , %;

Относительная погрешность измерения среднего значения площади сечения резервуара, из которой отпущен продукт, %.

4. Модели измерения массы нетто нефти

При применении объемно-массового метода измерения массы:

При применении гидростатического метода измерений массы:

где - масса нефти нетто, кг;

Масса балласта, кг;

- объемная доля воды в нефти, %;

Плотность воды, кг/м;

Концентрация хлористых солей, кг/м;

Нормированная массовая доля механических примесей в нефти, %.

4.1. Модели погрешности методов

для формулы (9)

для формулы (10)

где - абсолютная погрешность измерения плотности воды, кг/м;

Абсолютная погрешность измерения содержания воды, % объемных;

- абсолютная погрешность измерения концентрации хлористых солей, кг/м.

Примечание. Погрешности измерения параметров в моделях погрешностей методов не учитывают ввиду их малого влияния.

ПРИЛОЖЕНИЕ 3 (справочное). ПРИМЕРЫ ВЫЧИСЛЕНИЙ МАССЫ ПРОДУКТА И ОЦЕНКИ ПОГРЕШНОСТЕЙ МЕТОДОВ

ПРИЛОЖЕНИЕ 3
Справочное

1. Объемно-массовый динамический метод

1.1. При применении объемно-массового динамического метода применяют следующие средства измерений:

турбинный счетчик с пределами допускаемых значений относительной погрешности (в дальнейшем погрешностью) = ±0,2%;

поточный плотномер с абсолютной погрешностью = ±1,3 кг/м;

термометры с абсолютной погрешностью = ±0,5 °C;

манометры класса I с верхним пределом диапазона измерения = 10 МПа.



1.2. Измеренный объем продукта = 687344 м.

1.3. По результатам измерений за время прохождения объема вычисляют следующие параметры (средние арифметические значения):

температуру продукта при измерении объема = 32 °C;

давление при измерении объема = 5,4 МПа;

температуру продукта при измерении плотности = 30 °C;

давление при измерении плотности = 5,5 МПа;

плотность продукта = 781 кг/м.

1.4. По справочникам определяют:

коэффициент объемного расширения продукта = 8·10 1/°C;

коэффициент сжимаемости продукта от давления = 1,2·10 1/МПа.

1.5. Массу прошедшего по трубопроводу продукта вычисляют по формуле (1)

кг тыс. т.

1.6. Для определения погрешности метода вычисляют:

относительную погрешность измерения плотности по формуле


где - минимальное допускаемое в методике выполнения измерений (МВИ) значение плотности продукта;

абсолютную погрешность измерения разности температур

1.7. При определении погрешности метода учитывают, что она достигает максимума при максимально допускаемом превышении температуры над температурой , которое должно указываться в МВИ. Для примера принимаем, что в МВИ задано значение 10 °С.

1.8. Погрешность объемно-массового динамического метода измерения вычисляют по формуле (2) приложения 2:

2. Объемно-массовый статический метод

2.1. При применении объемно-массового статического метода использованы следующие средства измерений:






ареометр для нефти (нефтеденсиметр) с абсолютной погрешностью = 0,5 кг/м;

термометры с абсолютной погрешностью = ±1 °C.

Обработка результатов измерений производится на ЭВМ с относительной погрешностью = ±0,1%.

2.2. При измерениях перед отпуском продукта получены следующие результаты:

высота налива продукта = 11,574 м;

плотность продукта из объединенной пробы в лабораторных условиях при температуре = 22 °C -= 787 кг/м;

средняя температура продукта в резервуаре = 34 °C;

температура окружающего воздуха = -12 °C.

2.3. При измерениях после отпуска продукта получены следующие результаты:

высота налива продукта = 1,391 м;

плотность продукта из объединенной пробы в лабораторных условиях при температуре = 22 °C -= 781 кг/м;

средняя температура продукта в резервуаре = 32 °C;

температура окружающего воздуха = -18 °C.

2.4. По справочникам определяют:

коэффициент линейного расширения материала стенок резервуара

коэффициент объемного расширения продукта

2.5. По градуировочной таблице резервуара определяют:

объем продукта в резервуаре перед отпуском = 10673,7 м;

объем продукта в резервуаре после отпуска = 1108,2 м;

2.6. Вычисляют температуру стенок резервуара:

перед отпуском продукта

после отпуска продукта

2.7. Массу отпущенного продукта определяют по формуле (3) приложения 2:

2.8. Для определения погрешности метода вычисляют:

относительную погрешность измерения плотности продукта

;

абсолютную погрешность измерения разности температур:

2.9. При определении погрешности метода учитывают, что она достигает максимума при максимальном для данного резервуара значении , указанном в паспорте на резервуар, а также при минимальной разности и максимальном превышении температуры над температурой , которые должны указываться в МВИ.

2.9.1. В рассматриваемом случае, например, используют резервуар с = 12 м и заданы = 8 м (следовательно, = 4 м) и = -10 °С.

2.9.2. По градуировочной таблице резервуара определяют объемы, соответствующие уровням п. 2.9.1:

М, м и м.

2.9.3. Для расчета погрешности определяют значения

Примечание. В данных расчетах принято допущение о равенстве плотности продукта в резервуаре до начала и после окончания отпуска и плотности отпущенного продукта, что существенно не влияет на оценку погрешности.

2.10. Погрешность объемно-массового статического метода вычисляют по формуле (4) приложения 2:

3. Гидростатический метод

3.1. При применении гидростатического метода используют следующие средства измерений:

стальной вертикальный цилиндрический резервуар вместимостью 10000 м, отградуированный с относительной погрешностью = ±0,1% при температуре = 18 °C;

уровнемер с абсолютной погрешностью = ±12 мм;

дифференциальный манометр с относительной поргешностью = ±0,25%.

Обработка результатов измерений производится на ЭВМ с относительной погрешностью = ±0,1%.

3.2. При измерениях получены результаты:

высота налива продукта перед отпуском = 10,972 м;

дифференциальное давление перед отпуском= 86100 Па;

высота налива продукта после отпуска = 1,353 м;

дифференциальное давление после отпуска = 11800 Па;

3.3. По справочнику определяют значение ускорения свободного падения для данной местности = 9,815 м/с.

3.4. По градуировочной таблице резервуара определяют:

объем продукта перед отпуском = 10581,4 м;

объем продукта после отпуска = 1297,1 м.

3.5. Вычисляются следующие значения величин:

при применении для расчета формулы (5) приложения 2 среднее значение площади сечения резервуара перед отпуском продукта

и после отпуска продукта

при применении для расчета формулы (6) приложения 2 среднее значение площади сечения части резервуара, из которого отпущен продукт

разность давлений продукта в начале и в конце товарной операции с учетом изменившегося столба воздуха в резервуаре


где - плотность воздуха, кг/м.

3.6. Массу отпущенного продукта вычисляют по формуле (5) или (6), соответственно:

кг тыс. т.

кг тыс. т.

3.7. При определении погрешности метода учитывают, что она достигает максимума при максимальном для данного резервуара значении , указанного в паспорте на резервуар, а также при минимальном значении отпущенного продукта и его максимальной плотности , которые должны указываться в МВИ.

3.7.1. В рассматриваемом случае, например, используют резервуар с = 12 м и заданными = 7000 т и = 860 кг/м.

3.7.2. По градуировочной таблице резервуара определяют объем = 11112,1 м, соответствующий , рассчитывают минимальное изменение объема и максимальное значение объема :

По градуировочной таблице резервуара определяют уровень = 3,25 м, соответствующий .

3.8. Для расчета погрешности определяют

максимальное значение давления столба продукта перед отпуском:

после отпуска:

среднее значение площади сечения резервуара, соответствующее и :

относительную погрешность измерения разности давлений

3.9. Погрешность гидростатического метода определяют по формуле (7) или (8) приложения 2, соответственно:


Примечание. В данных расчетах за погрешность и принимается погрешность градуировки резервуара , равная 0,1%, так как погрешность измерения уровня при применении метода градуировки по ГОСТ 8. 380-80 не оказывает существенного влияния на погрешность измерения площадей.

4. Методы измерения массы нефти нетто

4.1. При измерении массы нефти брутто были использованы средства измерений и получены результаты, приведенные в пп. 1 и 3.

4.2. Дополнительно для измерения массы нефти нетто были использованы:

влагомер с абсолютной погрешностью = ±18 % (по объему),

солемер с абсолютной погрешностью = ±0,25 кг/м,

ареометр для измерения плотности воды с абсолютной погрешностью = 0,5 кг/м.

4.3. По результатам измерений за время отпуска продукта вычисляют следующие параметры (средние арифметические значения):

объемную долю воды в нефти = 0,7 % (по объему);

концентрацию хлористых солей в нефти = 1,2 кг/м;

плотность воды, содержащейся в нефти = 1050 кг/м.

4.4. Массовая доля механических примесей в нефти принимается равной предельному значению по ГОСТ 9965-76, = 0,05 % (по массе).

4.5. При применении объемно-массового метода (см. п. 1) массу нефти нетто определяют по формуле (9) приложения 2:

кг тыс. т.

4.6. При применении гидростатического метода (см. п. 3) предварительно определяют:

Массу нефти в этом случае определяют по формуле (10) приложения 2:

Кг тыс. т.

4.7. При определении погрешностей методов учитывается, что они достигают максимума при максимально допускаемых значениях плотности воды содержания воды и концентрации хлористых солей в нефти, при максимальном превышении температуры над температурой и минимально допускаемом значении плотности нефти , которые должны указываться в МВИ.

4.7.1. В рассматриваемом случае, например, в МВИ заданы:

кг/м и °С.

4.8. Погрешность объемно-массового метода измерения массы нефти нетто по формуле (11) приложения 2:

4.8.1. При применении объемно-массового статического метода (см. п. 2) погрешность определяют также по формуле (11) приложения 2, одноко требуется определить погрешность косвенного измерения объема , которую рассчитывают по формуле:

4.9. Для расчета погрешности гидростатического метода измерения массы нефти предварительно определяют абсолютную погрешность измерения плотности (см. п. 3)

Погрешность гидростатического метода измерения массы нефти нетто вычисляют по формуле (12) приложения 2:



Текст документа сверен по
официальное издание
Госстандарт СССР -
М.: Издательство стандартов, 1986