Электронная эмиссия. Эмиссия электронов. Типы сварочных дуг. Эмиссия горячих электронов

В узлах кристаллической решетки металлов находятся положительные ионы, а между ними свободно движутся электроны. Они как бы плавают по всему объему проводника, так как силы притяжения к положительным ионам решетки, действующие на свободные электроны, находящиеся внутри металла, в среднем взаимно уравновешиваются. Действие сил притяжения со стороны положительных ионов на электроны мешает последним выйти за пределы поверхности металла.

Лишь наиболее быстрые электроны могут преодолеть это притяжение и вылететь из металла. Однако совсем покинуть металл электрон не может, так как притягивается положительным поверхностным ионом и тем зарядом, который возник в металле в связи с потерей электрона. Равнодействующая этих сил притяжения не равна нулю, а направлена внутрь металла перпендикулярно его поверхности (рис. 1).

Через некоторое время электрон под действием этих сил может возвратиться в металл. Среди электронов, находящихся вблизи поверхности металла, найдется большое число таких, которые временно будут покидать металл, а затем возвращаться обратно. Этот процесс напоминает испарение жидкости. В конце концов устанавливается динамическое равновесие между покидающими и возвращающимися электронами. Таким образом, на границе металла с вакуумом возникает двойной слой электрических зарядов, поле которого подобно полю плоского конденсатора. Электрическое поле этого слоя можно считать однородным (рис. 2). Разность потенциалов в этом слое называется контактной разностью потенциалов между металлом и вакуумом.

Этот двойной электрический слой не создает поля во внешнем пространстве, но препятствует выходу электронов из металла.

Как показывают расчеты и специально поставленные опыты, толщина этого слоя мала и равна примерно 10 -10 м.

Таким образом, чтобы покинуть металл и уйти в окружающую среду, электрон должен совершить работу A в против сил притяжения со стороны положительного заряда металла и против сил отталкивания от отрицательно заряженного электронного облака. Она приблизительно равна A в = e, где e - заряд электрона. Для этого электрон должен обладать достаточной кинетической энергией.

Минимальную работу A в, которую должен совершить электрон за счет своей кинетической энергии для того, чтобы выйти из металла и не вернуться в него, называют работой выхода .

Работа выхода зависит только от рода металла и его чистоты. Работу выхода принято измерять в электронвольтах (эВ).

Для чистых металлов A в составляет несколько электронвольт. Так, например, для цезия ее значение равно 1,81 эВ, для платины 6,27 эВ.

Выход свободных электронов из металла называется эмиссией электронов . При нормальных внешних условиях электронная эмиссия выражена слабо, так как средняя кинетическая энергия хаотического теплового движения большинства свободных электронов в металлах гораздо меньше работы выхода. Для повышения интенсивности эмиссии следует увеличить кинетическую энергию свободных электронов до значений, равных или больших значения работы выхода. Этого можно достигнуть различными способами. Во-первых, созданием электрического поля очень большой напряженности (E ~ 10 6 В/см), способного вырвать электроны из металла, - холодная эмиссия . Такая эмиссия используется в электронных микропроекторах. Во-вторых, бомбардировкой металла электронами, предварительно разогнанными электрическим полем до очень большой скорости, - вторичная электронная эмиссия . В-третьих, интенсивным освещением поверхности металла - фотоэмиссия . На явлении фотоэмиссии основан внешний фотоэффект и устройство вакуумного фотоэлемента. В-четвертых, нагревание металла - термоэлектронная эмиссия . Электроны, испускаемые нагретым телом, называются термоэлектронами , а само это тело - эмиттером .

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Что значит "электронная эмиссия"

Энциклопедический словарь, 1998 г.

электронная эмиссия

испускание электронов твердым телом или жидкостью под действием электрического поля (автоэлектронная эмиссия), нагрева (термоэлектронная эмиссия), электромагнитного излучения (фотоэлектронная эмиссия), потока электронов (вторичная электронная эмиссия) и т.д.

Электронная эмиссия

испускание электронов поверхностью твёрдого тела или жидкости. Э. э. возникает в случаях, когда под влиянием внешних воздействий часть электронов тела приобретает энергию, достаточную для преодоления потенциального барьера на границе тела, или если под действием электрического поля поверхностный потенциальный барьер становится прозрачным для части электронов, обладающих внутри тела наибольшими энергиями. Э. э. может возникать при нагревании тел (термоэлектронная эмиссия), при бомбардировке электронами (вторичная электронная эмиссия), ионами (ионно-электронная эмиссия) или фотонами (фотоэлектронная эмиссия). В определённых условиях (например, при пропускании тока через полупроводник с высокой подвижностью электронов или при приложении к нему сильного импульса электрического поля) электроны проводимости могут «нагреваться» значительно сильнее, чем кристаллическая решётка, и часть из них может покинуть тело (эмиссия горячих электронов).

Для наблюдения Э. э. необходимо создать у поверхности тела (эмиттера) внешне ускоряющее электроны электрическое поле, которое «отсасывает» электроны от поверхности эмиттера. Если это поле достаточно велико (³ 102в/см), то оно уменьшает высоту потенциального барьера на границе тела и соответственно работу выхода (Шотки эффект), в результате чего Э. э. возрастает. В сильных электрических полях (~107 в/см) поверхностный потенциальный барьер становится очень тонким и возникает туннельное «просачивание» электронов сквозь него (туннельная эмиссия), иногда называемое также автоэлектронной эмиссией. В результате одновременного воздействия 2 или более факторов может возникать термоавто- или фотоавтоэлектронная эмиссия. В очень сильных импульсных электрических полях (~ 5×107в/см) туннельная эмиссия приводит к быстрому разрушению (взрыву) микроострий на поверхности эмиттера и к образованию вблизи поверхности плотной плазмы. Взаимодействие этой плазмы с поверхностью эмиттера вызывает резкое увеличение тока Э. э. до 106 а при длительности импульсов тока в несколько десятков нсек (взрывная эмиссия). При каждом импульсе тока происходит перенос микроколичеств (~ 10-11г) вещества эмиттера на анод.

Электроны проводника свободно перемещаются в пределах его границ, а при поглощении достаточной энергии могут и выходить наружу, преодолев стенку потенциальной ямы у поверхности тела (рис. 10.6). Это явление называется эмиссией электронов (в отдельном атоме аналогичное явление называется ионизацией).

При Т = 0 энергия, необходимая для эмиссии, определяется разностью между уровнями W = 0 и уровнем Ферми Е Р (рис. 10.6) и называется работой выхода. Источником энергии могут быть фотоны (см. параграф 9.3), вызывающие фотоэмиссию (фотоэффект).

Рис. 10.6

Причиной термоэлектронной эмиссии является нагревание металла. При искажении функции распределения электронов (см. рис. 10.5, б) се «хвост» может выйти за пределы среза потенциальной ямы, т.с. у некоторых электронов хватает энергии, чтобы покинуть металл. Обычно этим пользуются для поставки электронов в вакуум.

Простейший прибор, использующий термоэмиссию, - электровакуумный диод (рис. 10.7, а). Его катод К накаляется от источника ЭДС ? и и испускает электроны, которые создают ток иод действием электрического ноля между анодом и катодом. Электровакуумный диод отличается от фотодиода в основном источником энергии, вызвавшей эмиссию электронов, поэтому их вольтамперные характеристики похожи. Чем больше напряжение U a между анодом и катодом, тем большую часть электронов из их облака у катода вытягивает электрическое поле в единицу времени. Поэтому с ростом напряжения U a ток I растет. При некоторых напряжениях ноле вытягивает уже все электроны, покидающие катод, и дальнейший рост напряжения к росту тока нс приводит - происходит насыщение.


Рис. 10.7

ВОПРОС. Почему ток насыщения при Т, больше, чем при Г, (рис. 10.7, б)? ОТВЕТ. При Т 2 > Г, больше электронов покидает катод в единицу времени.

При обратной полярности приложенного напряжения («минус» подключен к аноду, а «плюс» - к катоду) электроны не ускоряются, а тормозятся, поэтому электровакуумный диод способен пропускать ток только в одну сторону, т.е. он обладает односторонней проводимостью. Это позволяет применять его для выпрямления тока (рис. 10.7, в): во время действия положительной полуволны напряжения диод пропускает ток, а во время отрицательной - нет.

В 1907 г. американец Ли де Форест дополнил диод третьим электродом- сеткой, который позволил усиливать электрические сигналы. Такой триод стали затем дополнять и другими электродами, что позволило создавать разного рода усилители, генераторы и преобразователи. Это обусловило бурное развитие электротехники, радиотехники и электроники. Далее эстафету подхватили полупроводниковые приборы, вытеснившие электровакуумные лампы, но в ЭЛТ, рентгеновских трубках, электронных микроскопах и некоторых вакуумных лампах термоэмиссия ио-нрежнему актуальна.

Еще одним источником эмиссии электронов может быть бомбардировка поверхности материала различными частицами. Вторичная электрон-эле- ктронная эмиссия возникает в результате ударов внешних электронов, передающих часть своей энергии электронам вещества. Такую эмиссию используют, например, в фотоэлектронном умножителе (ФЭУ) (рис. 10.8, а). Его фотокатод 1 испускает электроны под действием света. Их ускоряют в направлении электрода (динода) 2, из которого они выбивают вторичные электроны, те ускоряются к диноду 3 и т.д. В результате первичный фототок умножается до такой степени, что ФЭУ способен регистрировать даже отдельные фотоны.

Рис. 10.8

Тот же принцип применили и в ЭОП (см. параграф 9.3) нового поколения. Он содержит сотни тысяч ФЭУ (по числу пикселей, формирующих изображения объектов), каждый из которых представляет собой металлизированный микроканал шириной ~ 10 мкм. По этому каналу так же зигзагообразно, как свет в оптоволокне и как электроны в ФЭУ, движутся электроны, размножаясь при каждом соударении со стенками канала вследствие вторичной эмиссии. Поскольку траектория электронов пренебрежимо мало отличается от прямолинейной (лишь в пределах ширины канала), то пакет таких каналов, расположенный между фотокатодом и экраном (рис. 10.8, б), избавляет от необходимости фокусировки фотоэлектронов (сравните с рис. 9.4). Каждый канал осуществляет не только размножение электронов, но и перенос их в требуемую точку, что обеспечивает четкость изображения.

При вторичной ионно-электронной эмиссии первичными частицами - носителями энергии являются ионы. В газоразрядных приборах они обеспечивают воспроизводство электронов из катода, которые затем размножаются путем ионизации молекул газа (см. параграф 5.9).

Существует и весьма экзотичный вид эмиссии, происхождение которого объясняется принципом неопределенности Гейзенберга. Если у поверхности металла есть электрическое поле, ускоряющее электроны, то на потенциальный уступ 1 накладывается прямая еЕх (2 на рис. 10.6), и уступ превращается в барьер 3. Если полная энергия электрона равна W, т.е. на АW меньше высоты барьера, то по классическим представлениям «взять» его, т.е. выйти наружу, он не может. Однако по квантовым представлениям электрон - это еще и волна, которая не только отражается от оптически более плотной среды, но и преломляется. При этом наличие функции у внутри барьера означает конечную вероятность обнаружить там электрон. На «классический» взгляд, это невозможно, так как полная энергия электрона W, а ее составляющая - потенциальная энергия - равна в этой области W + AVK, т.е. часть оказывается больше целого! В то же время существует некоторая неопределенность AVK энергии, которая зависит от времени At пребывания электрона внутри барьера: AWAt >h. С уменьшением At: неопределенность AW может достичь требуемой величины, и решение уравнения Шредингера дает конечные значения | р | 2 с внешней стороны барьера, т.е. существует вероятность того, что электрон выйдет наружу, не перепрыгивая через барьер! Она тем выше, чем меньше AW п At.

Эти выводы подтверждаются па практике наличием туннельного, или подбарьерного, эффекта. Он даже находит применение, обеспечивая эмиссию электронов из металла в полях напряженностью ~10 6 -10 7 В/см. Поскольку такая эмиссия происходит без нагревания, облучения или бомбардировки частицами, ее называют автоэлектронной. Обычно она происходит со всевозможных остриев, выступов и т.и., где напряженность ноля резко возрастает. Она может привести и к электрическому пробою вакуумного промежутка.

В 1986 г. Нобелевской премией по физике отмечено основанное на туннельном эффекте изобретение сканирующего электронного микроскопа. Ее лауреаты - немецкие физики Э. Руска и Г. Бинниг и швейцарский физик Г. Рорер. В этом приборе тонкая игла сканирует вдоль поверхности на малом от нее расстоянии. Возникающий при этом туннельный ток несет информацию об энергетических состояниях электронов. Таким образом удается получить изображение поверхности с атомной точностью, что особенно важно в микроэлектронике.

Туннельный эффект ответствен за рекомбинацию при ионно-электронной эмиссии (см. выше), за электризацию трением, при которой электроны из атомов одного материала туннелируют к атомам другого. Он определяет и обобществление электронов при ковалентной связи, ведущей к расщеплению энергетических уровней (см. рис. 10.5, а).

Большую роль в обеспечении проводимости дугового промежутка играют электроны, поставляемые катодом под действием различных причин. Этот процесс выхода электронов с поверхности электрода катода или процесс освобождения электронов от связи с поверхностью называется эмиссией электронов. Для процесса эмиссии необходимо затратить энергию.

Энергия, которая достаточна для выхода электронов с поверхности катода, называется работой выхода (U вых )

Она измеряется в электрон-вольтах и обычно в 2-3 раза меньше работы ионизации.

Различают 4 вида эмиссии электронов:

1. Термоэлектронная эмиссия

2. Автоэлектронная эмиссия

3. Фотоэлектронная эмиссия

4. Эмиссия под действием удара тяжелых частиц.

Термоэлектронная эмиссия протекает под действием сильного нагрева поверхности электрода – катода. Под действием нагрева электроны, находящиеся на поверхности катода приобретают такое состояние, когда их кинетическая энергия становится равной или больше сил их притяжения к атомам поверхности электрода, они теряют связь с поверхностью и вылетают в дуговой промежуток. Сильный разогрев торца электрода (катода) протекает потому, что в момент его соприкосновения с деталью это соприкосновение происходит лишь в отдельных точках поверхности вследствие наличия неровностей. Такое положение при наличии тока приводит к сильному разогреву места контакта, в результате чего возбуждается дуга. Температура поверхности сильно влияет на имитирование электронов. Обычно эмиссия оценивается плотностью тока. Связь между термоэлектронной эмиссией и температурой катода установили Ричардсон и Дешман.

где j 0 – плотность тока, А/cм 2 ;

φ – работа выхода электрона, э-В;

А – константа, теоретическое значение которой А = 120 а/см 2 град 2 (опытное значение для металлов А » 62,2).

При автоэлектронной эмиссии энергия, необходимая для выхода электронов, сообщается внешним электрическим полем, которое как бы “отсасывает” электроны за пределы воздействия электростатического поля металла. В этом случае плотность тока может быть рассчитана по формуле

, (1.9)

где Е – напряженность электрического поля, В/см;

С повышением температуры значение автоэлектронной эмиссии снижается, но при невысоких температурах ее влияние может быть определяющим, особенно при высокой напряженности электрического поля (10 6 – 10 7 В/см), что по данным Броуна М.Я. и Г.И. Погодина-Алексеева может быть получено в приэлектродных областях.

При поглощении энергии излучения могут появиться электроны настолько большой энергии, что некоторые из них выходят с поверхности. Плотность тока фотоэмиссии определяется по формуле

где α – коэффициент отражения, значение которого для сварочных дуг неизвестно.

Длины волн, которые вызывают фотоэмиссию также как и для ионизации определяются по формуле

В отличие от ионизации, эмиссия электронов с поверхности щелочных и щелочноземельных металлов вызывается видимым светом.

Поверхность катода может быть подвергнута ударам тяжелых частиц (положительных ионов). Положительные ионы в случае удара о поверхность катода могут:

Во-первых , отдать кинетическую энергию, которой они обладают.

Во-вторых , могут нейтрализоваться на поверхности катода; при этом они отдают электроду энергию ионизации.

Таким образом, катод приобретает дополнительную энергию, которая идет на нагрев, плавление и испарение, а некоторая часть затрачивается вновь на выход электронов с поверхности. В результате достаточно интенсивной эмиссии электронов с катода и соответствующей ионизации дугового промежутка устанавливается устойчивый разряд – электрическая дуга с протеканием в цепи определенной величины тока при определенном напряжении.

В зависимости от степени развития того или иного вида эмиссии различают три типа сварочных дуг:

Дуги с горячим катодом;

Дуги с холодным катодом;

Пробега первичных электронов может превышать толщину эмиттера. В этом случае вторичная электронная эмиссия наблюдается как с бомбардируемой поверхности (вторичная электронная эмиссия на отражение), так и с противоположной стороны эмиттера (вторичная электронная эмиссия на прострел). Поток вторичных электронов состоит из упруго и неупруго отражённых первичных электронов и истинно вторичных электронов - электронов эмиттера, получивших в результате их возбуждения первичными или отражёнными неупруго электронами энергию и импульс, достаточные для выхода из эмиттера. Энергетич. спектр вторичных электронов лежит в диапазоне энергий от Е = 0 до энергии первичных электронов Еп (рис. 1). Тонкая структура энергетических спектра обусловлена оже-эффектом и характеристическими потерями энергии на возбуждение атомов эмиттера.

Рис. 1. Энергетический спектр вторичных электронов: (I) упруго отражённых, (II) неупруго отражённых, (III) истинно вторичных; тонкая структура спектров, обусловленная (а) оже-электронами и (б) характеристическими потерями энергии на возбуждение атомов эмиттера (Е - энергия электронов; Е макс и ΔЕ макс - максимальная энергия и полуширина максимума спектра истинно вторичных электронов; Е п - энергия первичных электронов).

Количественно вторичная электронная эмиссия характеризуется коэффициентом σ, равным:

σ = I 2 /I 1 =δ + η + r,

где I 1 и I 2 - токи, создаваемые первичными и вторичными электронами; δ - коэффициент истинной вторичной электронной эмиссия; η, r - коэффициенты соответственно неупругого и упругого отражения первичных электронов. Указанные коэффициенты зависят от параметров пучка первичных электронов (Е п, угла падения φ пучка на образец) и характеристик эмиттера (элементного состава, электронного строения, кристаллической структуры, состояния поверхности и др.).

Механизмы упругого отражения электронов различны в областях малых (0-100 эВ), средних (0,1-1 кэВ) и больших (1-100 кэВ) энергий Е п. В области малых Е п упругое отражение зависит от электронного строения приповерхностной области эмиттера, рассеяния электронов на отдельных атомах, резонансного упругого рассеяния электронов вблизи порогов коллективных и одночастичных возбуждений электронов твёрдого тела. Абсолютные значения коэффициента r в этой области максимальны (при E п ≤10 эВ r может достигать величины 0,5 для металлов и 0,7-0,8 для диэлектриков). В области средних Е п в большинстве случаев на зависимости r(Е п) наблюдается широкий максимум при значениях Ε п = Ζ 2 /8 (Ζ - атомный номер вещества эмиттера). Механизм упругого отражения в этом диапазоне Е п в значительной мере определяется упругим рассеянием электронов на атомах твёрдого тела; абсолютные значения r не превышают 0,05. Для монокристаллов зависимость r(Е п) в области средних Е п имеет ярко выраженную тонкую структуру, обусловленную дифракцией электронов на кристаллической решётке эмиттера. В диапазоне больших значений Е п r уменьшается с ростом Е п. Глубина выхода упруго отражённых электронов зависит от Е п и изменяется от долей до десятков нм.

Неупругое отражение электронов определяется рассеянием и торможением первичных электронов при их движении в веществе эмиттера. Зависимость η(Е п) различна для лёгких и тяжёлых веществ (рис. 2). Коэффициент η увеличивается с ростом φ; наиболее ярко эта закономерность выражена для веществ с малыми Ζ. Средняя энергия неупруго отражённых электронов Е н = 0,31 Е п и падает с уменьшением Е п, а их средняя глубина выхода не превышает половины глубины проникновения первичных электронов при данном значении Е п.

Эмиссия истинно вторичных электронов зависит от электронного строения эмиттера, существенно влияющего на потери энергии электронов и их выход из эмиттера. Вероятность выхода возбужденных истинно вторичных электронов зависит от высоты потенциального барьера на поверхности эмиттера, определяемого величиной работы выхода электронов. В металлах вследствие взаимодействия с электронами проводимости истинно вторичные электроны теряют много энергии и не могут преодолеть потенциальный барьер на поверхности. Для них характерна небольшая глубина выхода d истинно вторичных электронов и сравнительно малые значения коэффициента σ макс (0,4-1,8). В диэлектриках с широкой запрещённой зоной и малым сродством к электрону внутренние истинно вторичные электроны несут малые потери энергии, так как теряют её в основном только на взаимодействие с фотонами. Эти вещества имеют большие значения d (20-120 нм) и коэффициент σ макс (4-40). Наибольшие значения d (20-1500 нм) и σ макс ≥1000 имеют эмиттеры с отрицательным сродством к электрону. Создание сильного электрического поля (10 7 -10 8 В/м) в диэлектриках вызывает увеличение σ макс до 100 (вторичная электронная эмиссия, усиленная полем).

Вторичная электронная эмиссия широко используется в методах диагностики поверхности твёрдых тел. Сканирующая электронная микроскопия, используя различные группы вторичных электронов для визуализации исследуемого объекта, позволяет исследовать топографию, фазовый состав, кристаллическую структуру и другие свойства поверхности. Оже-электроны несут информацию об элементном составе, химическом состоянии поверхностных атомов.

Спектры электронов с характеристическими потерями энергии (в диапазоне единицы - сотни мэВ) дают информацию о фононных колебаниях в твёрдых телах, характеризуют колебательные моды адсорбированных атомов и молекул. Электроны с большими потерями энергии (обусловленными межзонными переходами, возбуждением плазменных колебаний в твёрдых телах и ионизацией атомов вещества эмиттера) используются для получения информации об элементном составе и электронном строении приповерхностной области эмиттеров.

Вторичная электронная эмиссия применяется для усиления электронных потоков в электронно-вакуумных приборах (вторичные и фотоэлектронные умножители, усилители яркости изображения и т.п.). Вторичная электронная эмиссия играет важную роль в работе ряда высокочастотных приборов.

Лит.: Бронштейн И. М., Фрайман Б. С. Вторичная электронная эмиссия. М., 1969; Шульман А.Р., Фридрихов С. А. Вторично-эмиссионные методы исследования твердого тела. М., 1977.