Определение реакций в подшипниках. Построение эпюр изгибающих и крутящих моментов (тихоходный вал). Расчетная схема валов редуктора (определение реакции и построение эпюр) Определение опорных реакций тихоходного вала

Тихоходный вал:

Дано: Ft = 1546,155 H, Fr = 567,339 H, Lт = 0,093 м, Lт/2 = 0,0465 м,

1. Определение реакции в подшипниках в горизонтальной плоскости:

Rсх*Lт + Ft * Lт/2 = 0

Rсх*0,093+1546,155*0,0465 = 0

Rсх*0,093 = -71,896

Rсх = 71,896/0,093 = 773,075 Н

Ft* Lт/2+Rдх* Lт = 0

1546,155*0,0465+ Rдх *0,093 = 0

Rдх = 71,896/0,093 = 773,075 Н

Проверка: ∑Fnх = 0

Rдх + Rсх - Ft = 0 ; 773,075+773,075-1546,155 = 0 ; 0 = 0

М2лев = Rсх * Lт/2 = 773,075*0,0465 = 35,947 Нм

М2пр = М2лев = 35,947 Нм

М3лев = Rсх * Lт- Ft* Lт/2 = 71,895-71,895 = 0

2. Определение реакции в подшипниках в вертикальной плоскости:

Rсу*Lт + Fr * Lт/2 = 0

Rсу*0,093+567,339*0,0465 = 0

Rсу = 26,381/0,093 = 283,669 Н

Fr* Lт/2+Rду* Lт = 0

567,339*0,0465+ Rду *0,093 = 0

Rду = 26,38/0,093 = 283,669 Н

Проверка: ∑Fnу = 0

Rсу – Fr+ Rду = 0 ; 283,669 – 567,339+283,669 = 0 ; 0 = 0

Строим эпюры изгибающих моментов.

М2лев = Rсу * Lт/2 = 283,669 *0,0465 = 13,19 Нм

М2пр = М2лев = 13,19 Нм

М3лев = Rсу * Lт- Fr* Lт/2 = 26,381-26,381 = 0

3. Строим эпюры крутящих моментов.

Мк = М2 = Ft*d2/2 = 1546,155*184,959/2 = 145,13 Нм

4. Определяем суммарные радиальные реакции:

Rс = = 823,476 Н

Rд = = 823,476 Н

5. Определяем суммарные изгибающие моменты.

М2 = = 38,29 Нм

7. Проверочный расчет подшипников:

7.1 Базовая динамическая грузоподъемность подшипника Сr представляет собой постоянную радиальную нагрузку, которую подшипник может воспринять при базовой долговечности, составляющей 10 оборотов внутреннего кольца.

Сr = 29100 Н для быстроходного вала (табл. К27, стр.410 ), подшипник 306.

Сr = 25500 Н для тихоходного вала (табл. К27, стр.410 ), подшипник 207.

Требуемая долговечность подшипника Lh составляет для зубчатых редукторов Lh ≥ 60000 часов.

Пригодность подшипников определяется сопоставлением расчетной динамической грузоподъемности Crp, Н с базовой долговечностью L10h, ч. с требуемой Lh, ч. по условиям Crp ≤ Сr; L10h ≥ Lh.

Расчетная динамическая грузоподъемность Crp, Н и базовая долговечность L10h, ч. определяются по формулам:

Crp = ; L10h =

где RE – эквивалентная динамическая нагрузка, Н;

ω – угловая скорость соответствующего вала, с

М – показатель степени: М = 3 для шариковых подшипников (стр.128 ).

7.1.1 Определяем эквивалентную нагрузку RE = V* Rr*Кв*Кт, где



V – коэффициент вращения. V = 1 при вращающемся внутреннем кольце подшипника (стр.130 ).

Rr – радиальная нагрузка подшипника, Н. Rr = R – суммарная реакция подшипника.

Кв – коэффициент безопасности. Кв = 1,7 (табл. 9.4, стр.133 ).

Кт – температурный коэффициент. Кт = 1(табл. 9.5, стр.135 ).

Быстроходный вал: RE = 1*1,7*1323,499*1 = 2249,448 Н

Тихоходный вал: RE = 1*1,7*823,746*1 = 1399,909 Н

7.1.2 Рассчитываем динамическую грузоподъемность Crp и долговечность L10h подшипников:

Быстроходный вал: Crp =2249,448 = 2249,448*11,999 = 26991,126 Н; 26991,126 ≤ 29100 - условие выполнено.

75123,783 ≥ 60000 - условие выполнено.

Тихоходный вал: Crp = 1399,909 = 1399,909*7,559 = 10581,912 Н; 10581,912 ≤ 25500 - условие выполнено.

848550,469 ≥ 60000 - условие выполнено.

Проверочный расчет показал рентабельность выбранных подшипников.

7.1.3 Составляем табличный ответ:

Основные размеры и эксплуатационные размеры подшипников:

8. Конструктивная компоновка привода:

8.1 Конструирование зубчатых колес:

Зубчатое колесо:

На торцах зубьев выполняют фаски размером f = 1,6 мм. Угол фаски αф на шевронных колесах при твердости рабочих поверхностей НВ < 350, αф = 45°. Способ получения заготовки – ковка или штамповка.

8.1.1 Установка колеса на вал:

Для передачи вращающегося момента редукторной парой применяют шпоночное соединение посадкой Н7/r6.

8.1.2 При использовании в качестве редукторной пары шевронных колес заботится об осевом фиксировании колеса нет необходимости, однако для предотвращения осевого смещения подшипников в сторону колеса устанавливаем две втулки по обе стороны колеса.

8.2 Конструирование валов:

Переходный участок валов между двумя смежными ступенями разных диаметров выполняют канавкой:

8.2.2 На первой и третей ступени тихоходного вала применяем шпоночное соединение со шпонками, имеющими следующие размеры:

8.3 Конструирование корпуса редуктора:

Корпус изготовлен литьем из чугуна марки СЧ 15. Корпус разъемный. Состоит из основания и крышки. Имеет прямоугольную форму, с гладкими наружными стенками без выступающих конструктивных элементов. В верхней части крышки корпуса имеется смотровое окно, закрытое крышкой с отдушиной. В нижней части основания расположены две пробки – сливная и контрольная.

Толщина стенок и ребер жесткости δ, мм.:δ=1,12 =1,12*3,459=3,8 мм.

Для выполнения условия δ≥6 мм., принимаем δ = 10 мм.

8.3.1 Крепление редуктора к фундаментальной раме (плите), осуществляется четырьмя шпильками М12. Ширина фланса 32 мм., координата оси отверстия под шпильку 14 мм. Соединение крышки и основания корпуса осуществляется шестью винтами М8. Крышка смотрового окна крепится четырьмя винтами М6.

8.4 Проверочный расчет валов

8.4.1. Определяем эквивалентный момент по формуле для валов:

Быстроходный вал: Мэкв = = = 63,011 (Н)

Тихоходный вал: Мэкв = = = 150,096 (Н)

8.4.2. Определяем расчетные эквивалентные напряжения δэкв и сравниваем их с допустимым значением [δ]u. Выбираем для ведущего и ведомого вала сталь 45, для которой [δ]u = 50 мПа

d = 42 – диаметр тихоходного вала в опасном сечении.

Вывод: прочность быстроходного и тихоходного вала обеспечена.

Смазывание

9.1 Для редукторов общего назначения применяют непрерывное смазывание жидким маслом картерным непроточным способом (окунанием). Этот способ применяется для зубчатых передач с окружными скоростями от 0,3 до 12,5 м/сек.

9.2 Выбор сорта масла зависит от значения расчетного контактного напряжения в зубьях GН и фактической окружной скорости колес U. Сорт масла выбирается по таблице 10.29, стр.241. В данном редукторе при U = 1,161 м/сек, GН = 412 применяется масло сорта И-Г-А-68.

9.3 Для одноступенчатых редукторов объем масла определяют из расчета 0,4…0,8 л. на 1 квт передаваемой мощности. Р = 2,2 квт, U = 2,2*0,5 = 1,100 л. Объем масла в проектируемом редукторе составляет 1,100 л. Заполнение редуктора маслом осуществляется через смотровое окно. Контроль уровня масла осуществляется с помощью контрольной пробки. Слив масла производят через сливную пробку.

9.4 Смазывание подшипников:

В проектируемых редукторах для смазывания подшипников качения применяют жидкие и пластичные смазочные материалы. Смазочный материал набивают в подшипник вручную при снятой крышке подшипникового узла. Наиболее распространенной для подшипников качения – пластичной смазки типа солидол жировой (ГОСТ 1033-79), консталин жировой УТ-1 (ГОСТ 1957-75).

1)Составляем расчет схемы вала:

Окружная сила F t = 7945,9 H

Радиальная сила F r = 2966,5 H

Осевая сила F a = 1811 Н

2)Составим расчетную схему вала:

Находим l 1:

l 1 = В П /2 + (5ч10) + в 2Т /2, (123)

l 1 = 37/2 + 10 + 63/2 = 60,5=60 мм.

Находим l 2:

l 2 = в 2Т /2 + (5ч10) + в 2Б + (5ч10) + В П /2, (124)

l 2 = 63/2 + 10 + 45 + 10 + 37/2 = 114 мм.

l 3 = 37/2+1,2*70+1,5*60=192 мм (125)

2) F M =vT 3 *250=7915,965 H

3) Ма =F a *d 2T /2=221578,5 H; (126)

М А = 0; (127)

Y В (60 + 114)-221578,6-2966,5*60 = 0, (128)

Y A (60+114)+114*2966,5= 221578,6

Проверка: ?Y=0, (130)

Y A +Y B -F r =0, (131)

670,13+2296,37-2966,5=0 - условие выполняется.

4) Определяем опорные реакции в горизонтальной плоскости:

Вследствие неизбежной несоостности соединения валов, тихоходный вал нагружают дополнительной силой F M - сила муфт.

Для двухступенчатого редуктора:

F M = 250vТ 2Т 2) =7915,96 H , (132)

Направляем силу F M , так чтобы она увеличивала напряжения и деформацию от силы F t (в худшем варианте).

Условие равновесия для точки

В: ?М В =0, (133)

X A (l 1 +l 2)- F t l 2 - F M l 3 =0 (133)

Запишем условие равновесия для точки

А: ?М А =0, (134)

X B (l 1 +l 2)+F t l 1 -F M (l 1 +l 2 +l 3)=0, (135)

Проверка: ?Х=0, (136)

X A + F t +X B - F M =0,

10,75+7945,9+15,55-7915,965=0 - условие выполняется.

5) Строим эпюру изгибающих моментов от сил F г и F а

M Cправ. =670,13*60 =40207,8 Н·м;

M Cлев. =Y A l 1 +Fa·d 2T /2=40207,8+221578,6 =261786,4 Н·м;

M B =Y A (l 1 +l 2)+ Fa·d 2T /2-F r l 2 =0 (Проверка!)

6) Строим эпюру моментов изгибающих от силы Ft.

M C. =-Х A l 1 =-10,75·60=-644,4·Н·м;

M B =Х A (l 1 +l 2)+Ft·l 2 =-1870,5+353,4=-1517,1 H·м;

M D =-X A (l 1 +l 2 +l 3)+ F t (l 1 +l 2)+X B l 3 ,

M D =-10,75*366+3,1*306+15,55*192=0(Проверка!)

Эпюра моментов изгибающих представлена в приложении А.

7)Строим суммарную эпюру изгибающих моментов

Ординаты суммарной эпюры изгибающих моментов от совместного действия этих сил находим по формуле:

M B =-1517,1 H·м;

Суммарная эпюра моментов изгибающих в приложение А.

8) Строим эпюру крутящих моментов:

Т = F t d 2т /2, (138)

Т = 7945,97525/2 = 2085817,12 Нм

Эпюра крутящих моментов в приложение А.

9) Определяем суммарные реакции опор:

Наиболее нагруженный является опора В, где действует радиальная сила =8458б51 Н.

5.2 Составление расчетных схем для тихоходного вала и определение реакций в опорах

Из предыдущих расчетов имеем:

L 1 = 69 (мм)

Реакции опор:

1. в плоскости XDZ:

∑М 1 = 0; R X 2 ∙ 2 l 1 - F t ∙ l 1 = 0; R X 2 =F t /2 = 17833/2 = 8916,5 Н

∑М 2 = 0; - R X 1 ∙ 2 l 1 - F t ∙ l 1 = 0; R X 1 =F t /2 = 17833/2 = 8916,5 Н

Проверка: ∑X= 0; R X 1 + R X 2 - F t = 0; 0 = 0

2. в плоскости YOZ:

∑М 1 = 0; F r ∙ l 1 + F a ∙ d 2 /2 – R y 2 ∙ 2 l 1 = 0; в

R y 2 = (F r ∙ l 1 + F a ∙ d 2 /2)/ 2 l 1 ;Н

R y 2 = (F r ∙ 69+ F a ∙ d 2 /2)/ 2 ∙ 69 = 9314,7 Н

∑М 2 = 0; - R y 1 ∙ 2 l 1 + F a ∙ d 2 /2 – F r ∙ l 1 = 0;

R y 1 = (F a ∙ d 2 /2 - F r ∙ l 1)/ 2 l 1 ;Н

R y 1 = (F a ∙ 524/2 - F r ∙ 69)/ 2 ∙ 69 = 2691,7 Н

Проверка: ∑Y= 0; - R y 1 + R y 2 – F r = 0; 0 = 0

Суммарные реакции опор:

P r 1 = √ R 2 X 1 + R 2 Y 1 ;Н

P r 1 = √ 8916,5 2 + 2691,7 2 = 9313,9 Н

P r 2 = √ R 2 X 2 + R 2 Y 2 ;Н

P r 2 = √ 8916,5 2 + 9314,7 2 = 12894,5 Н

Выбираем подшипники по более нагруженной опоре Z.

Принимаем шариковые радиальные подшипники 219 легкой серии:

D = 170 мм; d = 95 мм; В = 32 мм; С = 108 кН; С 0 = 95,6 кН.

5.3 Проверка долговечности подшипника

Определим отношение F a /С 0

F a /С 0 = 3162/95600 = 0,033

По таблице отношению F a /С 0 соответствует е = 0,25

Определим отношение F a /VF r

V – коэффициент при вращении внутреннего кольца

F a /VF r = 3162/6623 = 0,47


Определим эквивалентную нагрузку

Р = (x ∙ V ∙ F r + YF a) ∙ K σ ∙ K T ; Н

K σ – коэффициент безопасности

K T – температурный коэффициент

Р = (0,56 ∙ 1 ∙ 6623+ 1,78 3162) ∙ 1,8∙1= 16807 Н

Определим расчетную долговечность в млн.об.

L = (С/Р) 3 млн.об.

L = (108000/16807) 3 млн.об.

Определим расчетную долговечность в часах

L h 1 = L ∙ 10 6 /60 ∙ n 3 ; ч

L h 1 = 265 ∙ 10 6 /60 ∙ 2866 = 154 ∙10 3 ч

L h 1 ≥ 10 ∙ 10 3

154 ∙10 3 ≥ 10 ∙10 3

5.4 Оценка пригодности выбранных подшипников

Оценка пригодности выбранных подшипников

154 ∙10 3 ≥ 17987,2

154000 ≥ 17987,2

6. Конструирование элементов передачи

6.1 Выбор конструкции

Зубчатое колесо – кованое, форма – плоское

Шестерня выполнена за одно целое с валом

6.2 Расчет размеров

1. шестерня

Её размеры определены выше

Его размеры определены выше

Определим диаметр ступицы:

d ст = 1,6 ∙ d к; мм

d ст = 1,6 ∙ 120 = 192 мм

Принимаем d ст = 200 мм

Определим длину ступицы:

l ст = (1,2 ÷1,5) ∙ d к; мм

l ст = (1,2 ÷1,5) ∙ 120 = 144 ÷180 мм


Т.к. l ст ≤ b 2 , принимаем l ст = 95 мм

Определим толщину обода:

δ 0 = (2,5 ÷ 4) ∙m ; мм

δ 0 = (2,5 ÷ 4) ∙5 = 12,5 ÷ 20 мм

Принимаем δ 0 = 16 мм

Определим толщину диска:

С = 0,3 ∙ b 2 ; мм

С = 0,3 ∙ 95 = 28,5 мм

Принимаем С = 30 мм

Не только самоокупаемый, но и, в перспективе, приносящий ощутимую экономию на издержках. 3. Определение экономической эффективности разработки Введение Данная дипломная работа посвящена исследованию системы автоматического учёта движения грузов на складе. Рассмотрены основные принципы работы системы, проанализированы возможные ошибки. Исследования проводились с целью выявления новейших...

9, д, e) Крутонаклонные конвейеры с прижимной лентой успешно эксплуатируются на предприятиях связи и торговли для транспортирования посылок, пакетов, ящиков, коробок н т. п. Эти конвейеры выполнены па базе типовых узлов серийно выпускаемых стационарных ленточных транспортеров. Их производительность составляет свыше 200 единиц грузов в час, а угол наклона - 40-90°. Трубчатые и...



Перехода высокого напряжения на электроды при пробое; - наличие на участке не менее двух рабочих, прошедших соответствующий инструктаж. 15.1.2 Расчёт и проектирование системы общего искусственного освещения проектируемого механического цеха Наиболее распространёнными источниками света являются лампы накаливания, люминесцентные лампы и дуговые ртутные лампы. Предпочтение отдают люминесцентным...



... (ГАЦ), которая предназначена для управления роспуском составов на сортировочных горках в сортировочных станциях. · Станционное здание (вокзал), пассажирские перроны. Грузовая работа включает следующие операции: 1. Организация грузового хозяйства станций 2. Эксплуатация и содержание сооружений и устройств грузовых районов, складского, весового и холодильного хозяйств 3. Организация...


Uоб =40,3 2. Кинематический расчет привода 2.1 Общее передаточное число привода 2.2 Частоты вращения Что соответствует задачи 3. Силовой расчет 3.1 Находим рассчитанную мощность привода, как можно наибольшую размерную величину а) б) 3.2 Определяем мощность на валах 3.3 Определяем моменты на валах 3.4 Данные сводим в таблицу № вала ni мин-1 ...

расчете учитываем к.п.д. привода, частоту вращения, мощность двигателя, крутящий момент на тихоходном валу. В зависимости крутящего момента и диаметра вала из справочника выбираем подходящую муфту. Для дальнейшей разработки и изготовления редуктора необходимо наглядное представление о нем. Для этого чертятся чертежи, по которым можно точно определить месторасположения каждой детали. По...

М1 и М2; =0,99 - коэффициент полезного действия подшипников. Частота вращения на валах определяется по формулам: Где - частоты вращения на I, II, III валах привода, об/мин =1430 об/мин - частоты вращения вала электродвигателя; - передаточное отношение редуктора. Момент на валах определяется по формулам: где - моменты на I, II, III валах, Нм Номер вала P, кВт n, об/мин Т, ...





Зубчатой с шарниром скольжения (16) где ν - число рядов роликовой или втулочной цепи; φt=B/t - коэффициент ширины цепи; для зубчатых цепей φt=2…8. 7. РАСЧЕТ ЦЕПНОЙ ПЕРЕДАЧИ МЕХАНИЧЕСКОГО ПРИВОДА ЛЕНТОЧНОГО ТРАНСПОРТЕРА 1. Учитывая небольшую передаваемую мощность N1 при средней угловой скорости малой звездочки, принимаем для передачи однорядную роликовую цепь. 2. ...

Разработка конструкций валов приводов содержит в себе все основные стадии проектирования, техническое предложение, эскизный проект. Алгоритм расчета валов приведен на рисунке 4.

Рисунок 4 Схема алгоритма расчета вала

Исходные данные для расчета: Т - сила действующая на вал; Fr, Ft,Fx - крутящие моменты. Так как на расчетном валу нет элементов вызывающих осевую силу Fx= 0, Ft = 20806, Fr = -20806, Т = 4383.

Определения опорных реакций

Расчет реакции опор

Реакции опор вала изображены на рисунке 5.

Рисунок 5 Эпюры вала тяговых звездочек

Реакция левой опоры.

где l1,l2,l3,l4 - расстояние между элементами конструкции вала, l1 = 100, l2 = 630 , l3=100, l4=110, = = 20806 H.

где = -20806 Н.

Реакция правой опоры.

Определяем изгибающие моменты для рассчитываемого вала

Горизонтальной плоскости Ми, от оси: для муфты Ми(м) = 0, левая опора Ми(л)= 0, для левой звездочки Ми(лз) = - 2039 Н*м, для правой звездочки Ми(пз) = -2081 Н*м, для правой опоры Ми(п) = -42 Н*м. Эпюры данных сил изображены на рисунке 5.

Вертикальной плоскости Ми, от оси: для муфты Ми(м) = 0, левая опора Ми(л)= 0, для левой звездочки Ми(лз) = 0, для правой звездочки Ми(пз) = 0,

для правой опоры Ми(п) = 0 . Эпюры данных сил изображены на рисунке 5.

Ми приведенная: для муфты Ми(м) = 4383 Н*м, левая опора Ми(л)= 4383 Н*м, для левой звездочки Ми(лз) = 4383 Н*м, для правой звездочки Ми(пз) = 3022 Н*м, для правой опоры Ми(п) = 42 Н*м. Эпюры данных сил изображены на рисунке 5.

Полный изгибающий момент равен: для муфты Т(м) = 4383 Н*м, левая опора Т(л)= 4383 Н*м, для левой звездочки Т(лз) = 4383 Н*м, для правой звездочки Т(пз) = 2192 Н*м, для правой опоры Т(п) = 0 Н*м. Эпюры данных сил изображены на рисунке 5.

Выбираем материал для вала по приведенным нагрузкам: Сталь 45 ГОСТ 1050-88.