Сравнительный анализ эффективности простейших систем массового обслуживания. Теория массового обслуживания Приоритетность на эффективность работы смо разных типов

Курсовая работа

«Имитационное моделирование системы массового обслуживания»

по курсу «Исследование операций»

Введение

При исследовании операций часто приходится сталкиваться с системами, предназначенными для многоразового использования при решении однотипных задач. Возникающие при этом процессы получили название процессов обслуживания, а системы – систем массового обслуживания (СМО). Каждая СМО состоит из определенного числа обслуживающих единиц (приборов, устройств, пунктов, станций), которые называются каналами обслуживания. Каналами могут быть линии связи, рабочие точки, вычислительные машины, продавцы и др. По числу каналов СМО подразделяют на одноканальные и многоканальные.

Заявки поступают в СМО обычно не регулярно, а случайно, образуя так называемый случайный поток заявок (требований). Обслуживание заявок также продолжается какое-то случайное время. Случайный характер потока заявок и времени обслуживания приводит к тому, что СМО оказывается загруженной неравномерно: в какие-то периоды времени скапливается очень большое количество заявок (они либо становятся в очередь, либо покидают СМО не обслуженными), в другие же периоды СМО работает с недогрузкой или простаивает.

Предметом теории массового обслуживания является построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, характер потока заявок и т.п.) с показателями эффективности СМО, описывающими ее способность справляться с потоком заявок. В качестве показателей эффективности СМО используются:

– Абсолютная пропускная способность системы (А

Q

– вероятность отказа обслуживания заявки ();

k );

– среднее число заявок в очереди ();

СМО делят на 2 основных типа: СМО с отказами и СМО с ожиданием (очередью). В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует (например, заявка на телефонный разговор в момент, когда все каналы заняты, получает отказ и покидает СМО не обслуженной). В СМО с ожиданием заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь на обслуживание.

Одним из методов расчета показателей эффективности СМО является метод имитационного моделирования. Практическое использование компьютерного имитационного моделирования предполагает построение соответствующей математической модели, учитывающей факторы неопределенности, динамические характеристики и весь комплекс взаимосвязей между элементами изучаемой системы. Имитационное моделирование работы системы начинается с некоторого конкретного начального состояния. Вследствие реализации различных событий случайного характера, модель системы переходит в последующие моменты времени в другие свои возможные состояния. Этот эволюционный процесс продолжается до конечного момента планового периода, т.е. до конечного момента моделирования.

1. Основные характеристики CМОи показатели их эффективности

1.1 Понятие марковского случайного процесса

Пусть имеется некоторая система, которая с течением времени изменяет свое состояние случайным образом. В этом случае говорят, что в системе протекает случайный процесс.

Процесс называется процессом с дискретными состояниями, если его состояния можно заранее перечислить и переход системы из одного состояния в другое происходит скачком. Процесс называется процессом с непрерывным временем, если переходы системы из состояния в состояние происходят мгновенно.

Процесс работы СМО – это случайный процесс с дискретными состояниями и непрерывным временем.

Случайный процесс называют марковским или случайным процессом без последействия, если для любого момента времени вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент и не зависят от того, когда и как система пришла в это состояние.

При анализе процессов работы СМО удобно пользоваться геометрической схемой – графом состояний . Обычно состояния системы изображаются прямоугольниками, а возможные переходы из состояния в состояние – стрелками. Пример графа состояний приведен на рис. 1.


Поток событий – последовательность однородных событий, следующих одно за другим в случайные моменты времени.

Поток характеризуется интенсивностью λ – частотой появления событий или средним числом событий, поступающих в СМО в единицу времени.

Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность стационарного потока есть величина постоянная: .

Поток событий называется ординарным, если вероятность попадания на малый участок времени двух и более событий мала по сравнению с вероятностью попадания одного события, т.е., если события появляются в нем поодиночке, а не группами.

Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени и число событий, попадающих на одно из них, не зависит от числа событий, попадающих на другие.

Поток событий называется простейшим (или стационарным пуассоновским), если он одновременно стационарен, ординарен и не имеет последействия.

1.2 Уравнения Колмогорова

Все переходы в системе из состояния в состояние происходят под некоторым потоком событий. Пусть система находится в некотором состоянии , из которого возможен переход в состояние , тогда можно считать, что на систему воздействует простейший поток с интенсивностью , переводящий ее из состояния в . Как только появляется первое событие потока, происходит ее переход . Для наглядности на графе состояний у каждой стрелки, соответствующей переходу, указывается интенсивность . Такой размеченный граф состояний позволяет построить математическую модель процесса, т.е. найти вероятности всех состояний как функции времени. Для них составляются дифференциальные уравнения, называемые уравнениями Колмогорова.

Правило составлений уравнений Колмогорова: В левой части каждого из уравнений стоит производная по времени от вероятности данного состояния. В правой части стоит сумма произведений всех состояний, из которых возможен переход в данное состояние, на интенсивности соответствующих потоков событий минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного состояния.

Например, для графа состояний, приведенного на рис. 1, уравнения Колмогорова имеют вид:


Т.к. в правой части системы каждое слагаемое входит 1 раз со знаком и 1 раз со знаком , то, складывая все уравнений, получим, что

,

,

Следовательно, одно из уравнений системы можно отбросить и заменить уравнением (1.2.1).

Чтобы получить конкретное решение надо знать начальные условия, т.е. значения вероятностей в начальный момент времени.

1.3 Финальные вероятности и граф состояний СМО

При достаточно большом времени протекания процессов в системе (при ) могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов м. перейти в любое другое состояние, то финальные вероятности существуют, т.е.


Смысл финальных вероятностей состоит в том, что они равны среднему относительному времени нахождения системы в данном состоянии.

Т.к. в стационарном состоянии производные по времени равны нулю, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания нулю их правых частей.

Графы состояний, используемые в моделях систем массового обслуживания, называются схемой гибели и размножения. Такое название обусловлено тем, что эта схема используется в биологических задачах, связанных с изучением численности популяции. Его особенность состоит в том, что все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим (рис 2).

Рис. 2. Граф состояний в моделях СМО

Предположим, что все потоки, переводящие систему из одного состояния в другое, простейшие. По графу, представленному на рис. 2, составим уравнения для финальных вероятностей системы. Они имеют вид:

Получается система из ( n +1) уравнения, которая решается методом исключения. Этот метод заключается в том, что последовательно все вероятности системы выражаются через вероятность .

,

.

Подставляя эти выражения в последнее уравнение системы, находим , затем находим остальные вероятности состояний СМО.

1.4 Показатели эффективности СМО

Цель моделирования СМО состоит в том, чтобы рассчитать показатели эффективности системы через ее характеристики. В качестве показателей эффективности СМО используются:

– абсолютная пропускная способность системы (А ), т.е. среднее число заявок, обслуживаемых в единицу времени;

– относительная пропускная способность (Q ), т.е. средняя доля поступивших заявок, обслуживаемых системой;

– вероятность отказа (), т.е. вероятность того, что заявка покинет СМО не обслуженной;

– среднее число занятых каналов (k );

– среднее число заявок в СМО ();

– среднее время пребывания заявки в системе ();

– среднее число заявок в очереди () – длина очереди;

– среднее число заявок в системе ();

– среднее время пребывания заявки в очереди ();

– среднее время пребывания заявки в системе ()

– степень загрузки канала (), т.е. вероятность того, что канал занят;

– среднее число заявок, обслуживаемых в единицу времени;

– среднее время ожидания обслуживания;

– вероятность того, что число заявок в очереди превысит определенное значение и т.п.

Доказано, что при любом характере потока заявок, при любом распределении времени обслуживания, при любой дисциплине обслуживания, среднее время пребывания заявки в системе (очереди) равна среднему числу заявок в системе (очереди), деленному на интенсивность потока заявок, т.е.

(1.4.1)

Формулы (1.4.1) и (1.4.2) называются формулами Литтла. Они вытекают из того, что в предельном стационарном режиме среднее число заявок, прибывающих в систему, равно среднему числу заявок, покидающих ее, т.е. оба потока заявок имеют одну и ту же интенсивность .

Формулы для вычисления показателей эффективности приведены в таб. 1.


Таблица 1.

Показатели

Одноканальная СМО с

ограниченной очередью

Многоканальная СМО с

ограниченной очередью

Финальные

вероятности

Вероятность

Абсолютная пропускная

способность

Относительная пропускная

способность

Среднее число заявок в

Среднее число заявок под

обслуживанием

Среднее число заявок в системе

1.5 Основные понятия имитационного моделирования

Основная цель имитационного моделирования заключается в воспроизведении поведения изучаемой системы на основе анализа наиболее существенных взаимосвязей ее элементов.

Компьютерное имитационное моделирование следует рассматривать как статический эксперимент.

Из теории функций случайных величин известно, что для моделирования случайной величины с любой непрерывной и монотонно возрастающей функцией распределения достаточно уметь моделировать случайную величину , равномерно распределенную на отрезке . Получив реализацию случайной величины , можно найти соответствующую ей реализацию случайной величины , так как они связаны равенством

Предположим, что в некоторой системе массового обслуживания время обслуживания одной заявки распределено по экспоненциальному закону с параметром , где – интенсивность потока обслуживания. Тогда функция распределения времени обслуживания имеет вид

Пусть - реализация случайной величины , равномерно распределенной на отрезке , а – соответствующая ей реализация случайного времени обслуживания одной заявки. Тогда, согласно (1.5.1)

1.6 Построение имитационных моделей

Первый этап создания любой имитационной модели – этап описания реально существующей системы в терминах характеристик основных событий. Эти события, как правило, связаны с переходами изучаемой системы из одного возможного состояния в другое и обозначаются как точки на временной оси. Для достижения основной цели моделирования достаточно наблюдать систему в моменты реализации основных событий.

Рассмотрим пример одноканальной системы массового обслуживания. Целью имитационного моделирования подобной системы является определение оценок ее основных характеристик, таких, как среднее время пребывания заявки в очереди, средняя длина очереди и доля времени простоя системы.

Характеристики самого процесса массового обслуживания могут изменять свои значения либо в момент поступления новой заявки на обслуживание, либо при завершении обслуживания очередной заявки. К обслуживанию очередной заявки СМО может приступить немедленно (канал обслуживания свободен), но не исключена необходимость ожидания, когда заявке придется занять место в очереди (СМО с очередью, канал обслуживания занят). После завершения обслуживания очередной заявки СМО может сразу приступить к обслуживанию следующей заявки, если она есть, но может и простаивать, если таковая отсутствует. Необходимую информацию можно получить, наблюдая различные ситуации, возникающие при реализациях основных событий. Так, при поступлении заявки в СМО с очередью при занятом канале обслуживания длина очереди увеличивается на 1. Аналогично длина очереди уменьшается на 1, если завершено обслуживание очередной заявки и множество заявок в очереди не пусто.

Для эксплуатации любой имитационной модели необходимо выбрать единицу времени. В зависимости от природы моделируемой системы такой единицей может быть микросекунда, час, год и т.д.

Так как по своей сути компьютерное имитационное моделирование представляет собой вычислительный эксперимент, то его наблюдаемые результаты в совокупности должны обладать свойствами реализации случайной выборки. Лишь в этом случае будет обеспечена корректная статистическая интерпретация моделируемой системы.

При компьютерном имитационном моделировании основной интерес представляют наблюдения, полученные после достижения изучаемой системой стационарного режима функционирования, так как в этом случае резко уменьшается выборочная дисперсия.

Время, необходимое для достижения системой стационарного режима функционирования, определяется значениями ее параметров и начальным состоянием.

Поскольку основной целью является получение данных наблюдений с возможно меньшей ошибкой, то для достижения этой цели можно:

1) увеличить длительность времени имитационного моделирования процесса функционирования изучаемой системы. В этом случае не только увеличивается вероятность достижения системой стационарного режима функционирования, но и возрастает число используемых псевдослучайных чисел, что также положительно влияет на качество получаемых результатов.

2) при фиксированной длительности времени Т имитационного моделирования провести N вычислительных экспериментов, называемых еще прогонами модели, с различными наборами псевдослучайных чисел, каждый из которых дает одно наблюдение. Все прогоны начинаются при одном и том же начальном состоянии моделируемой системы, но с использованием различных наборов псевдослучайных чисел. Преимуществом этого метода является независимость получаемых наблюдений , показателей эффективности системы. Если число N модели достаточно велико, то границы симметричного доверительного интервала для параметра определяются следующим образом:


, , т.е. , где

Исправленная дисперсия, ,

N – число прогонов программы, – надежность, .

2. Аналитическое моделирование СМО

2.1 Граф состояний системы и уравнения Колмогорова

Рассмотрим двухканальную систему массового обслуживания (n = 2) с ограниченной очередью равной шести (m = 4). В СМО поступает простейший поток заявок со средней интенсивностью λ = 4,8 и показательным законом распределения времени между поступлением заявок. Поток обслуживаемых в системе заявок является простейшим со средней интенсивностью μ = 2 и показательным законом распределения временем обслуживания.

Данная система имеет 7 состояний, обозначим их:

S 0 – система свободная, нет заявок;

S 1 – 1 заявка на обслуживании, очередь пуста;

S 2 – 2 заявки на обслуживании, очередь пуста;

S 3 – 2 заявки на обслуживании, 1 заявка в очереди;

S 4 – 2 заявки на обслуживании, 2 заявки в очереди;

S 5 – 2 заявки на обслуживании, 3 заявки в очереди;

S 6 – 2 заявки на обслуживании, 4 заявки в очереди;

Вероятности прихода системы в состояния S 0 , S 1 , S 2 , …, S 6 соответственно равны Р 0 , Р 1 , Р 2 , …, Р 6 .

Граф состояний системы массового обслуживания представляет собой схему гибели и размножения. Все состояния системы можно представить в виде цепочки, в которой каждое из состояний связано с предыдущим и последующим.

Рис. 3. Граф состояний двухканальной СМО


Для построенного графа запишем уравнения Колмогорова:

Чтобы решить данную систему зададим начальные условия:

Систему уравнений Колмогорова (систему дифференциальных уравнений) решим численным методом Эйлера с помощью программного пакета Maple 11 (см. Приложение 1).

Метод Эйлера


где- в нашем случае, это правые части уравнений Колмогорова, n=6.

Выберем шаг по времени . Предположим , где Т – это время, за которое система выходит на стационарный режим. Отсюда получаем число шагов . Последовательно N раз вычисляя по формуле (1) получим зависимости вероятностей состояний системы от времени, приведенной на рис. 4.

Значения вероятностей СМО при равны:


Рис. 4. Зависимости вероятностей состояний системы от времени

P 0
P 5
P 4
P 3
P 2
P 1
2.2 Финальные вероятности системы

При достаточно большом времени протекания процессов в системе () могут устанавливаться вероятности состояний, не зависящие от времени, которые называются финальными вероятностями, т.е. в системе устанавливается стационарный режим. Если число состояний системы конечно, и из каждого из них за конечное число шагов можно перейти в любое другое состояние, то финальные вероятности существуют, т.е.

Т.к. в стационарном состоянии производные по времени равны 0, то уравнения для финальных вероятностей получаются из уравнений Колмогорова путем приравнивания правых частей 0. Запишем уравнения для финальных вероятностей для нашей СМО.


Решим данную систему линейных уравнений с помощью программного пакета Maple 11 (см. Приложение 1).

Получим финальные вероятности системы:

Сравнение вероятностей, полученных из системы уравнений Колмогорова при , с финальными вероятностями показывает, что ошибки равны:

Т.е. достаточно малы. Это подтверждает правильность полученных результатов.

2.3 Расчет показатели эффективности системы по финальным вероятностям

Найдем показатели эффективности системы массового обслуживания.

Сначала вычислим приведенную интенсивность потока заявок:

1) Вероятность отказав обслуживании заявки, т.е. вероятность того, что заявка покидает систему не обслуженной.В нашем случае заявке отказывается в обслуживании, если все 2 канала заняты, и очередь максимально заполнена (т.е. 4 человек в очереди), это соответствует состоянию системы S 6 . Т.к. вероятность прихода системы в состояние S 6 равна Р 6 , то

4) Средняя длина очереди, т.е. среднее число заявок в очереди, равна сумме произведений числа заявок в очереди на вероятность соответствующего состояния.

5) Среднее время пребывания заявки в очередиопределяется формулой Литтла:

3. Имитационное моделирование СМО

3.1 Алгоритм метода имитационного моделирования СМО (пошаговый подход)

Рассмотрим двухканальную систему массового обслуживания (n = 2) с максимальной длиной очереди равной шести (m = 4). В СМО поступает простейший поток заявок со средней интенсивностью λ = 4,8 и показательным законом распределения времени между поступлением заявок. Поток обслуживаемых в системе заявок является простейшим со средней интенсивностью μ = 2 и показательным законом распределения временем обслуживания.

Для имитации СМО воспользуемся одним из методов статистического моделирования – имитационным моделированием. Будем использовать пошаговый подход. Суть этого подхода в том, что состояния системы рассматриваются в последующие моменты времени, шаг между которыми является достаточно малым, чтобы за его время произошло не более одного события.

Выберем шаг по времени (). Он должен быть много меньше среднего времени поступления заявки () и среднего времени ее обслуживания (), т.е.

Где (3.1.1)

Исходя из условия (3.1.1) определим шаг по времени .

Время поступления заявки в СМО и время ее обслуживания являются случайными величинами. Поэтому, при имитационном моделировании СМО их вычисление производится с помощью случайных чисел.

Рассмотрим поступление заявки в СМО. Вероятность того, что на интервале в СМО поступит заявка, равна: . Сгенерируем случайное число , и, если , то будем считать, что заявка на данном шаге в систему поступила, если , то не поступила.

В программе это осуществляет isRequested () . Интервал времени примем постоянным и равным 0,0001, тогда отношение будет равно 10000. Если заявка поступила, то она принимает значение «истина», в противном случае значение «ложь».

bool isRequested()

double r = R. NextDouble();

if (r < (timeStep * lambda))

Рассмотрим теперь обслуживание заявки в СМО. Время обслуживания заявки в системе определяется выражением , где – случайное число. В программе время обслуживания определяется с помощью функции GetServiceTime () .

double GetServiceTime()

double r = R. NextDouble();

return (-1/mu*Math. Log (1-r, Math.E));

Алгоритм метода имитационного моделирования можно сформулировать следующим образом. Время работы СМО (Т ) разбивается на шаги по времени dt , на каждом из них выполняется ряд действий. Вначале определяются состояния системы (занятость каналов, длина очереди), затем, с помощью функции isRequested () , определяется, поступила ли на данном шаге заявка или нет.

Если поступила, и, при этом имеются свободные каналы, то с помощью функции GetServiceTime () генерируем время обработки заявки и ставим ее на обслуживание. Если все каналы заняты, а длина очереди меньше 4, то помещаем заявку в очередь, если же длина очереди равна 4, то заявке будет отказано в обслуживании.

В случае, когда на данном шаге заявка не поступала, а канал обслуживания освободился, проверяем, есть ли очередь. Если есть, то из очереди заявку ставим на обслуживание в свободный канал. После проделанных операций время обслуживания для занятых каналов уменьшаем на величину шага dt .

По истечении времени Т , т.е., после моделирования работы СМО, вычисляются показатели эффективности работы системы и результаты выводятся на экран.

3.2 Блок-схема программы

Блок-схема программы, реализующей описанный алгоритм, приведена на рис. 5.

Рис. 5. Блок-схема программы

Распишем некоторые блоки более подробно.

Блок 1. Задание начальных значений параметров.

Random R; // Генератор случайных чисел

public uint maxQueueLength; // Максимальная длина очереди

public uint channelCount; // Число каналов в системе

public double lambda; // Интенсивность потока поступления заявок

public double mu; // Интенсивность потока обслуживания заявок

public double timeStep; // Шагповремени

public double timeOfFinishProcessingReq; // Время окончания обслуживания заявки во всех каналах

public double timeInQueue; // Время пребывания СМО в состояниях с очередью

public double processingTime; // Времяработысистемы

public double totalProcessingTime; // Суммарноевремяобслуживаниязаявок

public uint requestEntryCount; // Числопоступившихзаявок

public uint declinedRequestCount; // Числоотказанныхзаявок

public uint acceptedRequestCount; // Числообслуженныхзаявок

uint queueLength; // Длина очереди //

Тип, описывающий состояния СМО

enum SysCondition {S0, S1, S2, S3, S4, S5, S6};

SysCondition currentSystemCondition; // Текущее состояние системы

Задание состояний системы. Выделим у данной 2-х канальной системы 7 различных состояний: S 0 , S 1 . S 6 . СМО находится в состоянии S 0 , когда система свободна; S 1 – хотя бы один канал свободен; в состоянии S 2 , когда все каналы заняты, и есть место в очереди; в состоянии S 6 – все каналы заняты, и очередь достигла максимальной длины (queueLength = 4).

Определяем текущее состояние системы с помощью функции GetCondition()

SysCondition GetCondition()

SysCondition p_currentCondit = SysCondition.S0;

int busyChannelCount = 0;

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq[i] > 0)

busyChannelCount++;

p_currentCondit += k * (i + 1);

if (busyChannelCount > 1)

{p_currentCondit ++;}

return p_currentCondit + (int) QueueLength;

Изменение времени пребывания СМО в состояниях с длиной очереди 1, 2,3,4. Это реализуется следующим программным кодом:

if (queueLength > 0)

timeInQueue += timeStep;

if (queueLength > 1)

{timeInQueue += timeStep;}

Присутствует такая операция, как помещение заявки на обслуживание в свободный канал. Просматриваются, начиная с первого, все каналы, когда выполняется условие timeOfFinishProcessingReq [ i ] <= 0 (канал свободен), в него подается заявка, т.е. генерируется время окончания обслуживания заявки.

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq [i] <= 0)

timeOfFinishProcessingReq [i] = GetServiceTime();

totalProcessingTime+= timeOfFinishProcessingReq [i];

Обслуживаниезаявоквканалахмоделируетсякодом:

for (int i = 0; i < channelCount; i++)

if (timeOfFinishProcessingReq [i] > 0)

timeOfFinishProcessingReq [i] -= timeStep;

Алгоритм метода имитационного моделирования реализован на языке программирования C#.

3.3 Расчет показателей эффективности СМО на основе результатов ее имитационного моделирования

Наиболее важными являются такие показатели, как:

1) Вероятность отказа в обслуживании заявки, т.е. вероятность того, что заявка покидает систему не обслуженной.В нашем случае заявке отказывается в обслуживании, если все 2 канала заняты, и очередь максимально заполнена (т.е. 4 человек в очереди). Для нахождения вероятности отказа разделим время пребывания СМО в состоянии с очередью 4 на общее время работы системы.

2) Относительная пропускная способность – это средняя доля поступивших заявок, обслуживаемых системой.

3) Абсолютная пропускная способность– это среднее число заявок, обслуживаемых в единицу времени.


4) Длина очереди, т.е. среднее число заявок в очереди. Длина очереди равна сумме произведений числа человек в очереди на вероятность соответствующего состояния. Вероятности состояний найдем как отношение времени нахождения СМО в этом состоянии к общему времени работы системы.

5) Среднее время пребывания заявки в очереди определяется формулой Литтла

6) Среднее число занятых каналовопределяется следующим образом:

7) Процент заявок, которым было отказано в обслуживании, находится по формуле

8) Процент обслуженных заявок находится по формуле


3.4 Статистическая обработка результатов и их сравнение с результатами аналитического моделирования

Т.к. показатели эффективности получаются в результате моделирования СМО в течение конечного времени, они содержат случайную компоненту. Поэтому, для получения более надежных результатов нужно провести их статистическую обработку. С этой целью оценим доверительный интервал для них по результатам 20 прогонов программы.

Величина попадает в доверительный интервал, если выполняется неравенство

, где

математическое ожидание (среднее значение), находится по формуле

Исправленная дисперсия,

,

N =20 – число прогонов,

– надежность. При и N =20 .

Результат работы программы представлен на рис. 6.


Рис. 6. Вид программы

Для удобства сравнения результатов, полученных различными методами моделирования, представим их в виде таблицы.

Таблица 2.

Показатели

эффективности СМО

Результаты

аналитического

моделирования

Результаты

имитационного моделирования (послед. шаг)

Результаты имитационного моделирования

Нижняя граница

доверительного

интервала

Верхняя граница

доверительного

интервала

Вероятность отказа 0,174698253017626

0,158495148639101

0,246483801571923
Относительная пропускная способность 0,825301746982374 0,753516198428077 0,841504851360899
Абсолютная пропускная способность 3,96144838551539 3,61687775245477 4,03922328653232
Средняя длина очереди 1,68655313447018 1,62655862750852 2,10148609204869
Среднее время пребывания заявки в очереди 0,4242558575 0,351365236347954 0,338866380730942 0,437809602510145
Среднее число занятых каналов 1,9807241927577 1,80843887622738 2,01961164326616

Из табл. 2 видно, что результаты, полученные при аналитическом моделировании СМО, попадают в доверительный интервал, полученный по результатам имитационного моделирования. Т.е., результаты, полученные разными методами, согласуются.

Заключение

В данной работе рассмотрены основные методы моделирования СМО и расчета показателей их эффективности.

Проведено моделирование двухканальной СМО с максимальной длиной очереди равной 4 с помощью уравнений Колмогорова, а также, найдены финальные вероятности состояний системы. Рассчитаны показатели ее эффективности.

Проведено имитационное моделирование работы такой СМО. На языке программирования C# составлена программа, имитирующая ее работу. Проведена серия расчетов, по результатам которых найдены значения показателей эффективности системы и выполнена их статистическая обработка.

Полученные при имитационном моделировании результаты согласуются с результатами аналитического моделирования.

Литература

1. Вентцель Е.С. Исследование операций. – М.: Дрофа, 2004. – 208 с.

2. Волков И.К., Загоруйко Е.А. Исследование операций. – М.: Изд.-во МГТУ им. Н.Э. Баумана, 2002. – 435 с.

3. Волков И.К., Зуев С.М., Цветкова Г.М. Случайные процессы. – М.: Изд.-во МГТУ им. Н.Э. Баумана, 2000. – 447 с.

4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. – М.: Высшая школа, 1979. – 400 с.

5. Ивницкий В.Л. Теория сетей массового обслуживания. – М.: Физматлит, 2004. – 772 с.

6. Исследование операций в экономике/ под ред. Н.Ш. Кремера. – М.: Юнити, 2004. – 407 с.

7. Таха Х.А. Введение в исследование операций. – М.: ИД «Вильямс», 2005. – 902 с.

8. Харин Ю.С., Малюгин В.И., Кирлица В.П. и др. Основы имитационного и статистического моделирования. – Минск: Дизайн ПРО, 1997. – 288 с.

Рассмотренный в предыдущей лекции марковский случайный процесс с дискретными состояниями и непрерывным временем имеет место в системах массового обслуживания (СМО).

Системы массового обслуживания – это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.

Примерами систем массового обслуживания могут служить:

  • расчетно-кассовые узлы в банках, на предприятиях;
  • персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач;
  • станции технического обслуживания автомобилей; АЗС;
  • аудиторские фирмы;
  • отделы налоговых инспекций, занимающиеся приёмкой и проверкой текущей отчетности предприятий;
  • телефонные станции и т. д.

Узлы

Требования

Больница

Санитары

Пациенты

Производство

Аэропорт

Выходы на взлетно-посадочные полосы

Пункты регистрации

Пассажиры

Рассмотрим схему работы СМО (рис. 1). Система состоит из генератора заявок, диспетчера и узла обслуживания, узла учета отказов (терминатора, уничтожителя заявок). Узел обслуживания в общем случае может иметь несколько каналов обслуживания.

Рис. 1
  1. Генератор заявок – объект, порождающий заявки: улица, цех с установленными агрегатами. На вход поступает поток заявок (поток покупателей в магазин, поток сломавшихся агрегатов (машин, станков) на ремонт, поток посетителей в гардероб, поток машин на АЗС и т. д.).
  2. Диспетчер – человек или устройство, которое знает, что делать с заявкой. Узел, регулирующий и направляющий заявки к каналам обслуживания. Диспетчер:
  • принимает заявки;
  • формирует очередь, если все каналы заняты;
  • направляет их к каналам обслуживания, если есть свободные;
  • дает заявкам отказ (по различным причинам);
  • принимает информацию от узла обслуживания о свободных каналах;
  • следит за временем работы системы.
  1. Очередь – накопитель заявок. Очередь может отсутствовать.
  2. Узел обслуживания состоит из конечного числа каналов обслуживания. Каждый канал имеет 3 состояния: свободен, занят, не работает. Если все каналы заняты, то можно придумать стратегию, кому передавать заявку.
  3. Отказ от обслуживания наступает, если все каналы заняты (некоторые в том числе могут не работать).

Кроме этих основных элементов в СМО в некоторых источниках выделяются также следующие составляющие:

терминатор – уничтожитель трансактов;

склад – накопитель ресурсов и готовой продукции;

счет бухгалтерского учета – для выполнения операций типа «проводка»;

менеджер – распорядитель ресурсов;

Классификация СМО

Первое деление (по наличию очередей):

  • СМО с отказами;
  • СМО с очередью.

В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не обслуживается.

В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.

СМО с очередями подразделяются на разные виды в зависимости от того, как организована очередь, – ограничена или не ограничена . Ограничения могут касаться как длины очереди, так и времени ожидания, «дисциплины обслуживания».

Итак, например, рассматриваются следующие СМО:

  • СМО с нетерпеливыми заявками (длина очереди и время обслуживания ограничено);
  • СМО с обслуживанием с приоритетом, т. е. некоторые заявки обслуживаются вне очереди и т. д.

Типы ограничения очереди могут быть комбинированными.

Другая классификация делит СМО по источнику заявок. Порождать заявки (требования) может сама система или некая внешняя среда, существующая независимо от системы.

Естественно, поток заявок, порожденный самой системой, будет зависеть от системы и ее состояния.

Кроме этого СМО делятся на открытые СМО и замкнутые СМО.

В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО – зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже исправно и ждет наладки.

Пример замкнутой системы: выдача кассиром зарплаты на предприятии.

По количеству каналов СМО делятся на:

  • одноканальные;
  • многоканальные.

Характеристики системы массового обслуживания

Основными характеристиками системы массового обслуживания любого вида являются:

  • входной поток поступающих требований или заявок на обслуживание;
  • дисциплина очереди;
  • механизм обслуживания.

Входной поток требований

Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание, и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием «вероятностное распределение моментов поступления требований». Здесь могут поступать как единичные, так и групповые требования (количество таких требований в каждом очередном поступлении ). В последнем случае обычно речь идет о системе обслуживания с параллельно-групповым обслуживанием.

А i – время поступления между требованиями – независимые одинаково распределенные случайные величины;

E(A) – среднее (МО) время поступления;

λ=1/E(A) – интенсивность поступления требований;

Характеристики входного потока:

  1. Вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание.
  2. Количество требований в каждом очередном поступлении для групповых потоков.

Дисциплина очереди

Очередь – совокупность требований, ожидающих обслуживания.

Очередь имеет имя.

Дисциплина очереди определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:

  • первым пришел – первый обслуживаешься;

first in first out (FIFO)

самый распространенный тип очереди.

Какая структура данных подойдет для описания такой очереди? Массив плох (ограничен). Можно использовать структуру типа СПИСОК.

Список имеет начало и конец. Список состоит из записей. Запись – это ячейка списка. Заявка поступает в конец списка, а выбирается на обслуживание из начала списка. Запись состоит из характеристики заявки и ссылки (указатель, за кем стоит). Кроме этого, если очередь с ограничением на время ожидания, то еще должно быть указано предельное время ожидания.

Вы как программисты должны уметь делать списки двусторонние, односторонние.

Действия со списком:

  • вставить в хвост;
  • взять из начала;
  • удалить из списка по истечении времени ожидания.
  • пришел последним - обслуживаешься первым LIFO (обойма для патронов, тупик на железнодорожной станции, зашел в набитый вагон).

Структура, известная как СТЕК. Может быть описан структурой массив или список;

  • случайный отбор заявок;
  • отбор заявок по критерию приоритетности.

Каждая заявка характеризуется помимо прочего уровнем приоритета и при поступлении помещается не в хвост очереди, а в конец своей приоритетной группы. Диспетчер осуществляет сортировку по приоритету.

Характеристики очереди

  • ограничение времени ожидания момента наступления обслуживания (имеет место очередь с ограниченным временем ожидания обслуживания, что ассоциируется с понятием «допустимая длина очереди»);
  • длина очереди.

Механизм обслуживания

Механизм обслуживания определяется характеристиками самой процедуры обслуживания и структурой обслуживающей системы. К характеристикам процедуры обслуживания относятся:

  • количество каналов обслуживания (N );
  • продолжительность процедуры обслуживания (вероятностное распределение времени обслуживания требований);
  • количество требований, удовлетворяемых в результате выполнения каждой такой процедуры (для групповых заявок);
  • вероятность выхода из строя обслуживающего канала;
  • структура обслуживающей системы.

Для аналитического описания характеристик процедуры обслуживания оперируют понятием «вероятностное распределение времени обслуживания требований».

S i – время обслуживания i -го требования;

E(S) – среднее время обслуживания;

μ=1/E(S) – скорость обслуживания требований.

Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента и от состояния и возможностей обслуживающей системы. В ряде случаев приходится также учитывать вероятность выхода из строя обслуживающего канала по истечении некоторого ограниченного интервала времени. Эту характеристику можно моделировать как поток отказов, поступающий в СМО и имеющий приоритет перед всеми другими заявками.

Коэффициент использования СМО

N ·μ – скорость обслуживания в системе, когда заняты все устройства обслуживания.

ρ=λ/(N μ) – называется коэффициентом использования СМО , показывает, насколько задействованы ресурсы системы.

Структура обслуживающей системы

Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т. п.). Прежде всего следует подчеркнуть, что система обслуживания может иметь не один канал обслуживания, а несколько; система такого рода способна обслуживать одновременно несколько требований. В этом случае все каналы обслуживания предлагают одни и те же услуги, и, следовательно, можно утверждать, что имеет место параллельное обслуживани .

Пример. Кассы в магазине.

Система обслуживания может состоять из нескольких разнотипных каналов обслуживания, через которые должно пройти каждое обслуживаемое требование, т. е. в обслуживающей системе процедуры обслуживания требований реализуются последовательно . Механизм обслуживания определяет характеристики выходящего (обслуженного) потока требований.

Пример. Медицинская комиссия.

Комбинированное обслуживание – обслуживание вкладов в сберкассе: сначала контролер, потом кассир. Как правило, 2 контролера на одного кассира.

Итак, функциональные возможности любой системы массового обслуживания определяются следующими основными факторами :

  • вероятностным распределением моментов поступлений заявок на обслуживание (единичных или групповых);
  • мощностью источника требований;
  • вероятностным распределением времени продолжительности обслуживания;
  • конфигурацией обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);
  • количеством и производительностью обслуживающих каналов;
  • дисциплиной очереди.

Основные критерии эффективности функционирования СМО

В качестве основных критериев эффективности функционирования систем массового обслуживания в зависимости от характера решаемой задачи могут выступать:

  • вероятность немедленного обслуживания поступившей заявки (Р обсл =К обс /К пост);
  • вероятность отказа в обслуживании поступившей заявки (P отк =К отк /К пост);

Очевидно, что Р обсл + P отк =1.

Потоки, задержки, обслуживание. Формула Поллачека–Хинчина

Задержка – один из критериев обслуживания СМО, время проведенное заявкой в ожидании обслуживания.

D i – задержка в очереди требования i ;

W i =D i +S i – время нахождения в системе требования i .

(с вероятностью 1) – установившаяся средняя задержка требования в очереди;

(с вероятностью 1) – установившееся среднее время нахождения требования в СМО (waiting).

Q(t) – число требований в очереди в момент времени t;

L(t) число требований в системе в момент времени t (Q(t) плюс число требований, которые находятся на обслуживании в момент времени t.

Тогда показатели (если существуют)

(с вероятностью 1) – установившееся среднее по времени число требований в очереди;

(с вероятностью 1) – установившееся среднее по времени число требований в системе.

Заметим, что ρ<1 – обязательное условие существования d, w, Q и L в системе массового обслуживания.

Если вспомнить, что ρ= λ/(N μ), то видно, что если интенсивность поступления заявок больше, чем N μ, то ρ>1 и естественно, что система не сможет справиться с таким потоком заявок, а следовательно, нельзя говорить о величинах d, w, Q и L.

К наиболее общим и нужным результатам для систем массового обслуживания относятся уравнения сохранения

Следует обратить внимание, что упомянутые выше критерии оценки работы системы могут быть аналитически вычислены для систем массового обслуживания M/M/N (N >1), т. е. систем с Марковскими потоками заявок и обслуживания. Для М/G/ l при любом распределении G и для некоторых других систем. Вообще распределение времени между поступлениями, распределение времени обслуживания или обеих этих величин должно быть экспоненциальным (или разновидностью экспоненциального распределения Эрланга k-го порядка), чтобы аналитическое решение стало возможным.

Кроме этого можно также говорить о таких характеристиках, как:

  • абсолютная пропускная способность системы – А=Р обсл *λ;
  • относительная пропускная способность системы –

Еще один интересный (и наглядный) пример аналитического решения вычисление установившейся средней задержки в очереди для системы массового обслуживания M/G/ 1 по формуле:

.

В России эта формула известна как формула ПоллачекаХинчина, за рубежом эта формула связывается с именем Росса (Ross).

Таким образом, если E(S) имеет большее значение, тогда перегрузка (в данном случае измеряемая как d ) будет большей; чего и следовало ожидать. По формуле можно обнаружить и менее очевидный факт: перегрузка также увеличивается, когда изменчивость распределения времени обслуживания возрастает, даже если среднее время обслуживания остается прежним. Интуитивно это можно объяснить так: дисперсия случайной величины времени обслуживания может принять большое значение (поскольку она должна быть положительной), т. е. единственное устройство обслуживания будет занято длительное время, что приведет к увеличению очереди.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью ее функционирования. В большинстве случаев все параметры, описывающие системы массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам.

Случайный характер потока заявок (требований), а также, в общем случае, и длительности обслуживания приводит к тому, что в системе массового обслуживания происходит случайный процесс. По характеру случайного процесса , происходящего в системе массового обслуживания (СМО), различают системы марковские и немарковские . В марковских системах входящий поток требований и выходящий поток обслуженных требований (заявок) являются пуассоновскими. Пуассоновские потоки позволяют легко описать и построить математическую модель системы массового обслуживания. Данные модели имеют достаточно простые решения, поэтому большинство известных приложений теории массового обслуживания используют марковскую схему. В случае немарковских процессов задачи исследования систем массового обслуживания значительно усложняются и требуют применения статистического моделирования, численных методов с использованием ЭВМ.

1.1. Структура и параметры эффективности и качества функционирования СМО

Многие экономические задачи связаны с системами массового обслуживания, т.е. такими системами, в которых, с одной стороны, возникают массовые запросы (требования) на выполнение каких-либо услуг, с другой – происходит удовлетворение этих запросов. СМО включает в себя следующие элементы: источник требований, входящий поток требований, очередь, обслуживающие устройства (каналы обслуживания), выходящий поток требований. Исследованием таких систем занимается теория массового обслуживания.

Средства, обслуживающие требования, называются обслуживающими устройствами или каналами обслуживания. Например, к ним относятся заправочные устройства на АЗС, каналы телефонной связи, посадочные полосы, мастера-ремонтники, билетные кассиры, погрузочно-разгрузочные точки на базах и складах.

Методами теории массового обслуживания могут быть решены многие задачи исследования процессов, происходящих в экономике. Так, в организации торговли эти методы позволяют определить оптимальное количество торговых точек данного профиля, численность продавцов, частоту завоза товаров и другие параметры. Другим характерным примером систем массового обслуживания могут служить заправочные станции, и задачи теории массового обслуживания в данном случае сводятся к тому, чтобы установить оптимальное соотношение между числом поступающих на заправочную станцию требований на обслуживание и числом обслуживающих устройств, при котором суммарные расходы на обслуживания и убытки от простоя были бы минимальными. Теория массового обслуживания может найти применение и при расчете площади складских помещений, при этом складская площадь рассматривается как обслуживающее устройство, а прибытие транспортных средств под выгрузку – как требование. Модели теории массового обслуживания применяются также при решении ряда задач организации и нормирования труда, других социально-экономических проблем.

Каждая СМО включает в свою структуру некоторое число обслуживающих устройств, называемых каналами обслуживания (к их числу можно отнести лиц, выполняющих те или иные операции, - кассиров, операторов, менеджеров, и т.п.), обслуживающих некоторый поток заявок (требований), поступающих на ее вход в случайные моменты времени. Обслуживание заявок происходит за неизвестное, обычно случайное время и зависит от множества самых разнообразных факторов. После обслуживания заявки канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времени их обслуживания приводит к неравномерности загрузки СМО - перегрузке с образованием очередей заявок или недогрузке - с простаиванием ее каналов. Случайность характера потока заявок и длительности их обслуживания порождает в СМО случайный процесс, для изучения которого необходимы построение и анализ его математической модели. Изучение функционирования СМО упрощается, если случайный процесс является марковским (процессом без последействия, или без памяти), когда работа СМО легко описывается с помощью конечных систем обыкновенных линейных дифференциальных уравнений первого порядка, а в предельном режиме (при достаточно длительном функционировании СМО) посредством конечных систем линейных алгебраических уравнений. В итоге показатели эффективности функционирования СМО выражаются через параметры СМО, потока заявок и дисциплины.

Из теории известно, чтобы случайный процесс являлся Марковским, необходимо и достаточно, чтобы все потоки событий (потоки заявок, потоки обслуживаний заявок и др.), под воздействием которых происходят переходы системы из состояния в состояние, являлись пуассоновским, т.е. обладали свойствами последствия (для любых двух непересекающихся промежутков времени число событий, наступающих за один из них, не зависит от числа событий, наступающих за другой) и ординарности (вероятность наступления за элементарным, или малый, промежуток времени более одного события пренебрежимо мала по сравнению с вероятностью наступления за этот промежуток времени одного события). Для простейшего пуассоновского потока случайная величина Т (промежуток времени между двумя соседними событиями) распределена по показательному закону, представляя собой плотность ее распределения или дифференциальную функцию распределения.

Если же в СМО характер потоков отличен от пуассоновского, то ее характеристики эффективности можно определить приближенно с помощью Марковской теории массового обслуживания, причем тем точнее, чем сложнее СМО, чем больше в ней каналов обслуживания. В большинстве случаев для обоснованных рекомендаций по практическому управлению СМО совсем не требует знаний точных ее характеристик, вполне достаточно иметь их приближенные значения.

Каждая СМО в зависимости от своих параметров обладает определенной эффективностью функционирования.

Эффективность функционирования СМО характеризуют три основные группы показателей:

1. Эффективность использования СМО – абсолютная или относительная пропускные способности, средняя продолжительность периода занятости СМО, коэффициент использования СМО, коэффициент не использования СМО;

2. Качество обслуживания заявок- среднее время (среднее число заявок, закон распределения) ожидания заявки в очереди или пребывания заявки в СМО; вероятность того, что поступившая заявка немедленно примется к исполнению;

3. Эффективность функционирования пары CМО потребитель, причем под потребителем понимается как совокупность заявок или их некоторый источник (например, средний доход, приносимый СМО за единицу времени эксплуатации, и др).

1.2 Классификация СМО и их основные элементы

СМО классифицируются на разные группы в зависимости от состава и от времени пребывания в очереди до начала обслуживания, и от дисциплины обслуживания требований.

По составу СМО бывают одноканальные (с одним обслуживающим устройством) и многоканальные (с большим числом обслуживающих устройств). Многоканальные системы могут состоять из обслуживающих устройств как одинаковой, так и разной производительности.

По времени пребывания требований в очереди до начала обслуживания системы делятся на три группы:

1) с неограниченным временем ожидания (с ожиданием),

2) с отказами;

3) смешанного типа.

В СМО с неограниченным временем ожидания очередное требование, застав все устройства занятыми, становится в очередь и ожидает обслуживания до тех пор, пока одно из устройств не освободится.

В системах с отказами поступившее требование, застав все устройства занятыми, покидает систему. Классическим примером системы с отказами может служить работа автоматической телефонной станции.

В системах смешанного типа поступившее требование, застав все (устройства занятыми, становятся в очередь и ожидают обслуживания в течение ограниченного времени. Не дождавшись обслуживания в установленное время, требование покидает систему.

Кратко рассмотрим особенности функционирования некоторых из этих ситем.

1. СМО с ожиданием характеризуется тем, что в системе из n (n>=1) любая заявка, поступившая в СМО в момент, когда все каналы заняты, становится в очередь и ожидает своего обслуживания, причем любая пришедшая заявка обслужена. Такая система может находится в одном из бесконечного множества состояний: s n +к (r=1.2…) –все каналы заняты и в очереди находится r заявок.

2. СМО с ожиданием и ограничением на длину очереди отличается от вышеприведенной тем, что эта система может находиться в одном из n+m+1 состояний. В состояниях s 0 ,s 1 ,…, s n очереди не существует, так как заявок в системе или нет или нет вообще и каналы свободны (s 0), или в системе есть несколько I (I=1,n) заявок, которого обслуживает соответствующее (n+1, n+2,…n+r,…,n+m) число заявок и (1,2,…r,…,m) заявок, стоящих в очереди. Заявка, пришедшая на вход СМО в момент времени, когда в очереди стоят уже m заявок, получает отказ и покидает систему необслуженной.

Т.о, многоканальная СМО работает по сути как одноканальная, когда все n каналов работают как один с дисциплиной взаимопомощи, называемой все как один, но с более высокой интенсивностью обслуживания. Граф состояний подобной подобной системы содержит всего два состояния: s 0 (s 1)- все n каналов свободны (заняты).

Анализ различных видов СМО с взаимопомощью типа все как один показывает, что такая взаимопомощь сокращает среднее время пребывания заявки в системе, но ухудшает ряд других таких характеристик, как вероятность отказа, пропускная способность, средние число заявок в очереди и время ожидания их выполнения. Поэтому для улучшения этих показателей используется изменение дисциплины обслуживания заявок с равномерной взаимопомощью между каналами следующим образом:

· Если заявка поступает в СМО в момент времени, когда все каналы свободны, то все n каналов приступает к ее обслуживанию;

· Если в это время приходит следующая заявка, то часть каналов переключается на ее обслуживание

· Если во время обслуживания этих двух заявок поступает третья заявка, то часть каналов переключается на обслуживание этой третьей заявки, до тех пор, пока каждая заявка, находящаяся в СМО, не окажется под обслуживанием только одного канала. При этом заявка, поступившая в момент занятости всех каналов, в СМО с отказами и равномерной взаимопомощью между каналами, может получить отказ и вынуждена будет покинуть систему необслуженной.

Методы и модели, применяющиеся в теории массового обслуживания, можно условно разделить на аналитические и имитационные.

Аналитические методы теории массового обслуживания позволяют получить характеристики системы как некоторые функции параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффективность работы СМО. Имитационные методы основаны на моделировании процессов массового обслуживания на ЭВМ и применяются, если невозможно применение аналитических моделей.

В настоящее время теоретически наиболее разработаны и удобны в практических приложениях методы решения таких задач массового обслуживания, в которых входящий поток требований является простейшим (пуассоновским).

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона, т.е. вероятность поступления за время t ровно k требований задается формулой:

Важная характеристика СМО - время обслуживания требований в системе. Время обслуживания одного требования является, как правило, случайной величиной и, следовательно, может быть описано законом распределения. Наибольшее распространение в теории и особенно в практических приложениях получил экспоненциальный закон распределения времени обслуживания. Функция распределения для этого закона имеет вид:

Т.е. вероятность того, что время обслуживания не превосходит некоторой величины t, определяется этой формулой, где µ- параметр экспоненциального обслуживания требований в системе, т.е. величина, обратная времени обслуживания t об:

Рассмотрим аналитические модели наиболее распространенных СМО с ожиданием, т.е. таких СМО, в которых требования, поступившие в момент, когда все обслуживающие каналы заняты, ставятся в очередь и обслуживаются по мере освобождения каналов.

Общая постановка задачи состоит в следующем. Система имеет n обслуживающих каналов, каждый из которых может одновременно обслуживать только одно требование.

В систему поступает простейший (пауссоновский) поток требований c параметром . Если в момент поступления очередного требования в системе на обслуживании уже находится не меньше n требований (т.е. все каналы заняты), то это требование становится в очередь и ждет начала обслуживания.

В системах с определенной дисциплиной обслуживания поступившее требование, застав все устройства занятыми, в зависимости от своего приоритета, либо обслуживается вне очереди, либо становится в очередь.

Основными элементами СМО являются: входящий поток требований, очередь требований, обслуживающие устройства, (каналы) и выходящий поток требований.

Изучение СМО начинается с анализа входящего потока требований. Входящий поток требований представляет собой совокупность требований, которые поступают в систему и нуждаются в обслуживании. Входящий поток требований изучается с целью установления закономерностей этого потока и дальнейшего улучшения качества обслуживания.

В большинстве случаев входящий поток неуправляем и зависит от ряда случайных факторов. Число требований, поступающих в единицу времени, случайная величина. Случайной величиной является также интервал времени между соседними поступающими требованиями. Однако среднее количество требований, поступивших в единицу времени, и средний интервал времени между соседними поступающими требованиями предполагаются заданными.

Среднее число требований, поступающих в систему обслуживания за единицу времени, называется интенсивностью поступления требований и определяется следующим соотношением:

где Т - среднее значение интервала между поступлением очередных требований.

Для многих реальных процессов поток требований достаточно хорошо описывается законом распределения Пуассона. Такой поток называется простейшим.

Простейший поток обладает такими важными свойствами:

1) Свойством стационарности, которое выражает неизменность вероятностного режима потока по времени. Это значит, что число требований, поступающих в систему в равные промежутки времени, в среднем должно быть постоянным. Например, число вагонов, поступающих под погрузку в среднем в сутки должно быть одинаковым для различных периодов времени, к примеру, в начале и в конце декады.

2) Отсутствия последействия, которое обуславливает взаимную независимость поступления того или иного числа требований на обслуживание в непересекающиеся промежутки времени. Это значит, что число требований, поступающих в данный отрезок времени, не зависит от числа требований, обслуженных в предыдущем промежутке времени. Например, число автомобилей, прибывших за материалами в десятый день месяца, не зависит от числа автомобилей, обслуженных в четвертый или любой другой предыдущий день данного месяца.

3) Свойством ординарности, которое выражает практическую невозможность одновременного поступления двух или более требований (вероятность такого события неизмеримо мала по отношению к рассматриваемому промежутку времени, когда последний устремляют к нулю).

При простейшем потоке требований распределение требований, поступающих в систему подчиняются закону распределения Пуассона:

вероятность того, что в обслуживающую систему за время t поступит именно k требований:

где. - среднее число требований, поступивших на обслуживание в единицу времени.

На практике условия простейшего потока не всегда строго выполняются. Часто имеет место нестационарность процесса (в различные часы дня и различные дни месяца поток требований может меняться, он может быть интенсивнее утром или в последние дни месяца). Существует также наличие последействия, когда количество требований на отпуск товаров в конце месяца зависит от их удовлетворения в начале месяца. Наблюдается и явление неоднородности, когда несколько клиентов одновременно пребывают на склад за материалами. Однако в целом пуассоновский закон распределения с достаточно высоким приближением отражает многие процессы массового обслуживания.

Кроме того, наличие пуассоновского потока требований можно определить статистической обработкой данных о поступлении требований на обслуживание. Одним из признаков закона распределения Пуассона является равенство математического ожидания случайной величины и дисперсии этой же величины, т.е.

Одной из важнейших характеристик обслуживающих устройств, которая определяет пропускную способность всей системы, является время обслуживания.

Время обслуживания одного требования ()- случайная величина, которая может изменятся в большом диапазоне. Она зависит от стабильности работы самих обслуживающих устройств, так и от различных параметров, поступающих в систему, требований (к примеру, различной грузоподъемности транспортных средств, поступающих под погрузку или выгрузку.

Случайная величина полностью характеризуется законом распределения, который определяется на основе статистических испытаний.

На практике чаще всего принимают гипотезу о показательном законе распределения времени обслуживания.

Показательный закон распределения времени обслуживания имеет место тогда, когда плотность распределения резко убывает с возрастанием времени t. Например, когда основная масса требований обслуживается быстро, а продолжительное обслуживание встречается редко. Наличие показательного закона распределения времени обслуживания устанавливается на основе статистических наблюдений.

При показательном законе распределения времени обслуживания вероятность события, что время обслуживания продлиться не более чем t, равна:

где v - интенсивность обслуживания одного требования одним обслуживающим устройством, которая определяется из соотношения:

где - среднее время обслуживания одного требования одним обслуживающим устройством.

Следует заметить, что если закон распределения времени обслуживания показательный, то при наличии нескольких обслуживающих устройств одинаковой мощности закон распределения времени обслуживания несколькими устройствами будет также показательным:

где n - количество обслуживающих устройств.

Важным параметром СМО является коэффициент загрузки , который определяется как отношение интенсивности поступления требований к интенсивности обслуживания v.

где a - коэффициент загрузки; - интенсивность поступления требований в систему; v - интенсивность обслуживания одного требования одним обслуживающим устройством.

Из (1) и (2) получаем, что

Учитывая, что - интенсивность поступления требований в систему в единицу времени, произведение показывает количество требований, поступающих в систему обслуживания за среднее время обслуживания одного требования одним устройством.

Для СМО с ожиданием количество обслуживаемых устройств п должно быть строго больше коэффициента загрузки (требование установившегося или стационарного режима работы СМО) :

В противном случае число поступающих требований будет больше суммарной производительности всех обслуживающих устройств, и очередь будет неограниченно расти.

Для СМО с отказами и смешанного типа это условие может быть ослаблено, для эффективной работы этих типов СМО достаточно потребовать, чтобы минимальное количество обслуживаемых устройств n было не меньше коэффициента загрузки :


1.3 Процесс имитационного моделирования

Как уже было отмечено ранее, процесс последовательной разработки имитационной модели начинается с создания простой модели, которая затем постепенно усложняется в соответствии с требованиями, предъявляемыми решаемой проблемой. В процессе имитационного моделирования можно выделить следующие основные этапы:

1. Формирование проблемы: описание исследуемой проблемы и определение целей исследования.

2. Разработка модели: логико-математическое описание моделируемой системы в соответствии с формулировкой проблемы.

3. Подготовка данных: идентификация, спецификация и сбор данных.

4. Трансляция модели: перевод модели на язык, приемлемый для используемой ЭВМ.

5. Верификация: установление правильности машинных программ.

6. Валидация: оценка требуемой точности и соответствие имитационной модели реальной системе.

7. Стратегическое и тактическое планирование: определение условий проведения машинного эксперимента с имитационной моделью.

8. Экспериментирование: прогон имитационной модели на ЭВМ для получения требуемой информации.

9. Анализ результатов: изучение результатов имитационного эксперимента для подготовки выводов и рекомендаций по решению проблемы.

10. Реализация и документирование: реализация рекомендаций, полученных на основе имитации, составление документации по модели и ее использованию.

Рассмотрим основные этапы имитационного моделирования. Первой задачей имитационного исследования является точное определение проблемы и детальная формулировка целей исследования. Как правило, определение проблемы является непрерывным процессом, который обычно осуществляется в течении всего исследования. Оно пересматривается по мере более глубокого понимания исследуемой проблемы и возникновения новых ее аспектов.

Как только сформулировано начальное определение проблемы, начинается этап построения модели исследуемой системы. Модель включает статистическое и динамическое описание системы. В статистическом описании определяются элементы системы и их характеристики, а в динамическом- взаимодействие элементов системы, в результате которых происходит изменение ее состояния во времени.

Процесс формирования модели во многом является искусством. Разработчик модели должен понять структуру системы, выявить правила ее функционирования и суметь выделить в них самое существенное, исключив ненужные детали. Модель должна быть простой для понимания и в то же время достаточно сложной, чтобы реалистично отображать характерные черты реальной системы. Наиболее важными являются принимаемые разработчиком решения относительно того, верны ли принятые упрощения и допущения, какие элементы и взаимодействия между ними должны быть включены в модель. Уровень детализации модели зависит от целей ее создания. Необходимо рассматривать только те элементы, которые имеют существенное значение для решения исследуемой проблемы. Как на этапе формирования проблемы, так и на этапе моделирования необходимо тесное взаимодействие между разработчиком модели и ее пользователями. Кроме того, тесное взаимодействие на этапах формулирования проблемы и разработки модели создает у пользователя уверенность в правильности модели, поэтому помогает обеспечить успешную реализацию результатов имитационного исследования.

На этапе разработки модели определяются требования к входным данным. Некоторые из этих данных могут уже быть в распоряжении разработчика модели, в то время как для сбора других потребуется время и усилия. Обычно значение таких входных данных задаются на основе некоторых гипотез или предварительного анализа. В некоторых случаях точные значения одного (и более) входных параметров оказывают небольшое влияние на результаты прогонов модели. Чувствительность получаемых результатов к изменению входных данных может быть оценена путем проведения серии имитационных прогонов для различных значений входных параметров. Имитационная модель, следовательно, может использоваться для уменьшения затрат времени и средств на уточнение входных данных. После того как разработана модель и собраны начальные входные данные, следующей задачей является перевод модели в форму, доступную для компьютера.

На этапах верификации и валидации осуществляется оценка функционирования имитационной модели. На этапе верификации определяется, соответствует ли запрограммированная для ЭВМ модель замыслу разработчика. Это обычно осуществляется путем ручной проверки вычисления, а также может быть использован и ряд статистических методов.

Установление адекватности имитационной модели исследуемой системы осуществляется на этапе валидации. Валидация модели обычно выполняется на различных уровнях. Специальные методы валидации включают установление адекватности путем использования постоянных значений всех параметров имитационной модели или путем оценивания чувствительности выходов к изменению значений входных данных. В процессе валидации сравнение должно осуществляться на основе анализа как реальных, так и экспериментальных данных о функционировании системы.

Условия проведения машинных прогонов модели определяется на этапах стратегического и тактического планирования. Задача стратегического планирования заключается в разработке эффективного плана эксперимента, в результате которого выясняется взаимосвязь между управляемыми переменными, либо находится комбинация значений управляемых переменных, минимизация или максимизация имитационной модели. В тактическом планировании в отличии от стратегического решается вопрос о том, как в рамках плана эксперимента провести каждый имитационный прогон, чтобы получить наибольшее количество информации из выходных данных. Важное место в тактическом планировании занимают определение условий имитационных прогонов и методы снижения дисперсии среднего значения отклика модели.

Следующие этапы в процессе имитационного исследования- проведение машинного эксперимента и анализ результатов- включают прогон имитационной модели на ЭВМ и интерпретацию полученных выходных данных. Последним этапом имитационного исследования является реализация полученных решений и документирование имитационной модели и ее использование. Ни одни из имитационных проектов не должен считаться законченным до тех пор, пока их результаты не были использованы в процессе принятия решений. Успех реализации во многом зависит от того, насколько правильно разработчик модели выполнил все предыдущие этапы процессов имитационного исследования. Если разработчик и пользователь работали в тесном контакте и достигли взаимопонимания при разработке модели и ее исследовании, то результат проекта скорее всего будет успешно внедряться. Если же между ними не было тесной взаимосвязи, то, несмотря на элегантность и адекватность имитационного моделирования, сложно будет разработать эффективные рекомендации.

Вышеперечисленные этапы редко выполняются в строго заданной последовательности, начиная с определения проблемы и кончая документированием. В ходе имитационного моделирования могут быть сбои в прогонах модели, ошибочные допущения, от которых в дальнейшем приходится отказываться, переориентировки целей исследования, повторные оценки и перестройки модели. Такой процесс позволяет разработать имитационную модель, которая дает верную оценку альтернатив и облегчает процесс принятия решений.


Глава 2. Распределения и генераторы псевдослучайных чисел

Ниже будут использованы следующие обозначения:

X - случайная величина; f(х) - функция плотности вероятности X; F(х) - функция вероятности X;

а - минимальное значение;

b - максимальное значение;

μ -математическое ожидание М[Х]; σ2 -дисперсия М[(Х-μ)2];

σ -среднеквадратичное отклонение; α-параметр функции плотности вероятности;

Очередь длины k, остается в ней с вероятностью Pk и не присоединяется к очереди с вероятностью gk=1 - Pk,". именно так обычно ведут себя люди в очередях. В системах массового обслуживания, являющихся математическими моделями производственных процессов, возможная длина очереди ограничена постоянной величиной (емкость бункера, например). Очевидно, это частный случай общей постановки. Некоторые...

Показатели эффективности СМО
  • абсолютная и относительная пропускная способность системы;
  • коэффициенты загрузки и простоя;
  • среднее время полной загрузки системы;
  • среднее время пребывания заявки в системе.
Показатели, характеризующие систему с точки зрения потребителей :
  • P обс – вероятность обслуживания заявки,
  • t сист – время пребывания заявки в системе.
Показатели, характеризующие систему с точки зрения её эксплуатационных свойств :
  • λ b – абсолютная пропускная способность системы (среднее число обслуженных заявок в единицу времени),
  • P обс – относительная пропускная способность системы,
  • k з – коэффициент загрузки системы.
см. также Параметры экономической эффективности СМО

Задача . В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 (1/ч). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.
Решение. По условию n=3, λ=0,25(1/ч), t об. =3 (ч). Интенсивность потока обслуживаний μ=1/t об. =1/3=0,33. Интенсивность нагрузки ЭВМ по формуле (24) ρ=0,25/0,33=0,75. Найдем предельные вероятности состояний:
по формуле (25) p 0 =(1+0,75+0,75 2 /2!+0,75 3 /3!) -1 =0,476;
по формуле (26) p 1 =0,75∙0,476=0,357; p 2 =(0,75 2 /2!)∙0,476=0,134; p 3 =(0,75 3 /3!)∙0,476=0,033 т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% - имеется одна заявка (занята одна ЭВМ), 13,4% - две заявки (две ЭВМ), 3,3% времени - три заявки (заняты три ЭВМ).
Вероятность отказа (когда заняты все три ЭВМ), таким образом, P отк. =p 3 =0,033.
По формуле (28) относительная пропускная способность центра Q = 1-0,033 = 0,967, т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.
По формуле (29) абсолютная пропускная способность центра A= 0,25∙0,967 = 0,242, т.е. в один час в среднем обслуживается 0,242 заявки.
По формуле (30) среднее число занятых ЭВМ k =0,242/0,33 = 0,725, т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на 72,5/3 =24,2%.
При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, у нас высокая пропускная способность СМО, а с другой стороны - значительный простой каналов обслуживания) и выбрать компромиссное решение.

Задача . В порту имеется один причал для разгрузки судов. Интенсивность потока судов равна 0,4 (судов в сутки). Среднее время разгрузки одного судна составляет 2 суток. Предполагается, что очередь может быть неограниченной длины. Найти показатели эффективности работы причала, а также вероятность того, что ожидают разгрузки не более чем 2 судна.
Решение. Имеем ρ = λ/μ = μt об. =0,4∙2=0,8. Так как ρ = 0,8 < 1, то очередь на разгрузку не может бесконечно возрастать и предельные вероятности существуют. Найдем их.
Вероятность того, что причал свободен, по (33) p 0 = 1 - 0,8 = 0,2, а вероятность того, что он занят, P зан. = 1-0,2 = 0,8. По формуле (34) вероятности того, что у причала находятся 1, 2, 3 судна (т.е. ожидают разгрузки 0, 1, 2 судна), равны p 1 = 0,8(1-0,8) = 0,16; p 2 = 0,8 2 ∙(1-0,8) = 0,128; p 3 = 0,8 3 ∙(1-0,8) = 0,1024.
Вероятность того, что ожидают разгрузку не более чем 2 судна, равна
P=p 1 +p 2 +p 3 = 0,16 + 0,128 + 0,1024 = 0,3904
По формуле (40) среднее число судов, ожидающих разгрузки
L jч =0,8 2 /(1-0,8) = 3,2
а среднее время ожидания разгрузки по формуле (15.42)
T оч =3,2/0,8 = 4 сутки.
По формуле (36) среднее число судов, находящихся у причала, L сист. = 0,8/(1-0,8) = 4 (сутки) (или проще по (37) L сист. = 3,2+0,8 = 4 (сутки), а среднее время пребывания судна у причала по формуле (41) T сист = 4/0,8 = 5 (сутки).
Очевидно, что эффективность разгрузки судов невысокая. Для ее повышения необходимо уменьшение среднего времени разгрузки судна t об либо увеличение числа причалов n .

Задача . В универсаме к узлу расчета поступает поток покупателей с интенсивностью λ = 81 чел. в час. Средняя продолжительность обслуживания контролером-кассиром одного покупателя t об = 2 мин. Определить:
а. Минимальное количество контролеров-кассиров п min , при котором очередь не будет расти до бесконечности, и соответствующие характеристики обслуживания при n=n min .
б. Оптимальное количество n опт. контролеров-кассиров, при котором относительная величина затрат С отн., связанная с издержками на содержание каналов обслуживания и с пребыванием в очереди покупателей, задаваемая, например, как , будет минимальна, и сравнить характеристики обслуживания при n=n min и n=n опт.
в. Вероятность того, что в очереди будет не более трех покупателей.
Решение.
а. По условию l = 81(1/ч) = 81/60 = 1,35 (1/мин.). По формуле (24) r = l/ m = lt об = 1,35×2 = 2,7. Очередь не будет возрастать до бесконечности при условии r/n < 1, т.е. при n > r = 2,7. Таким образом, минимальное количество контролеров-кассиров n min = 3.
Найдем характеристики обслуживания СМО при п = 3.
Вероятность того, что в узле расчета отсутствуют покупатели, по формуле (45) p 0 = (1+2,7+2,7 2 /2!+2,7 3 /3!+2,7 4 /3!(3-2,7)) -1 = 0,025, т.е. в среднем 2,5% времени контролеры-кассиры будут простаивать.
Вероятность того, что в узле расчета будет очередь, по (48) P оч. = (2,7 4 /3!(3-2,7))0,025 = 0,735
Среднее число покупателей, находящихся в очереди, по (50) L оч. = (2,7 4 /3∙3!(1-2,7/3) 2)0,025 = 7,35.
Среднее время ожидания в очереди по (42) T оч. = 7,35/1,35 = 5,44 (мин).
Среднее число покупателей в узле расчета по (51) L сист. = 7,35+2,7 = 10,05.
Среднее время нахождения покупателей в узле расчета по (41) T сист. = 10,05/1,35 = 7,44 (мин).
Таблица 1

Характеристика обслуживания Число контролеров-кассиров
3 4 5 6 7
Вероятность простоя контролеров-кассиров p 0 0,025 0,057 0,065 0,067 0,067
Среднее число покупателей в очереди T оч. 5,44 0,60 0,15 0,03 0,01
Относительная величина затрат С отн. 18,54 4,77 4,14 4,53 5,22
Среднее число контролеров-кассиров, занятых обслуживанием покупателей, по (49) k = 2,7.
Коэффициент (доля) занятых обслуживанием контролеров-кассиров
= ρ/n = 2,7/3 = 0,9.
Абсолютная пропускная способность узла расчета А = 1,35 (1/мин), или 81 (1/ч), т.е. 81 покупатель в час.
Анализ характеристик обслуживания свидетельствует о значительной перегрузке узла расчета при наличии трех контролеров-кассиров.
б. Относительная величина затрат при n = 3
C отн. = = 3/1,35+3∙5,44 = 18,54.
Рассчитаем относительную величину затрат при других значениях п (табл. 1).
Как видно из табл. 2, минимальные затраты получены при n = n опт. = 5 контролерах-кассирах.
Определим характеристики обслуживания узла расчета при n = n опт. =5. Получим P оч. = 0,091; L оч. = 0,198; Т оч. = 0,146 (мин); L сист. = 2,90; T снст. = 2,15 (мин); k = 2,7; k 3 = 0,54.
Как видим, при n = 5 по сравнению с n = 3 существенно уменьшились вероятность возникновения очереди P оч. , длина очереди L оч. и среднее время пребывания в очереди T оч. и соответственно среднее число покупателей L сист. и среднее время нахождения в узле расчета T сист., а также доля занятых обслуживанием контролеров k 3. Но среднее число занятых обслуживанием контролеров-кассиров k и абсолютная пропускная способность узла расчета А естественно не изменились.
в. Вероятность того, что в очереди будет не более 3 покупателей, определится как
= 1- P оч. + p 5+1 + p 5+2 + p 5+3 , где каждое слагаемое найдем по формулам (45) – (48). Получим при n=5:

Заметим, что в случае n=3 контролеров-кассиров та же вероятность существенно меньше: P(r ≤ 3) =0,464.

1. Показатели эффективности использования СМО:

Абсолютная пропускная способность СМО – среднее число заявок, которое смо-

жет обслужить СМО в единицу времени.

Относительная пропускная способность СМО – отношение среднего числа заявок,

обслуживаемых СМО в единицу времени, к среднему числу поступивших за это же

время заявок.

Средняя продолжительность периода занятости СМО.

Коэффициент использования СМО – средняя доля времени, в течение которого

СМО занята обслуживанием заявок, и т.п.

2. Показатели качества обслуживания заявок:

Среднее время ожидания заявки в очереди.

Среднее время пребывания заявки в СМО.

Вероятность отказа заявке в обслуживании без ожидания.

Вероятность того, что вновь поступившая заявка немедленно будет принята к обслуживанию.

Закон распределения времени ожидания заявки в очереди.

Закон распределения времени пребывания заявки в СМО.

Среднее число заявок, находящихся в очереди.

Среднее число заявок, находящихся в СМО, и т.п.

3. Показатели эффективности функционирования пары «СМО – клиент», где под «клиентом» понимают всю совокупность заявок или некий их источник. К числу таких показателей относится, например, средний доход, приносимый СМО в единицу времени

Классификация систем массового обслуживания

По числу каналов СМО:

одноканальные (когда имеется один канал обслуживания)

многоканальные , точнее n -канальные (когда количество каналов n ≥ 2).

По дисциплине обслуживания:

1. СМО с отказами , в которых заявка, поступившая на вход СМО в момент, когда все

каналы заняты, получает «отказ» и покидает СМО («пропадает»). Чтобы эта заявка все же

была обслужена, она должна снова поступить на вход СМО и рассматриваться при этом как заявка, поступившая впервые. Примером СМО с отказами может служить работа АТС: если набранный телефонный номер (заявка, поступившая на вход) занят, то заявка получает отказ, и, чтобы дозвониться по этому номеру, следует его набрать еще раз.

2. СМО с ожиданием (неограниченным ожиданием или очередью ). В таких системах

заявка, поступившая в момент занятости всех каналов, становится в очередь и ожидает освобождения канала, который примет ее к обслуживанию. Каждая заявка, поступившая на вход, в конце концов будет обслужена. Такие СМО часто встречаются в торговле, в сфере бытового и медицинского обслуживания, на предприятиях (например, обслуживание станков бригадой наладчиков).

3. СМО смешанного типа (с ограниченным ожиданием ). Это такие системы, в которых на пребывание заявки в очереди накладываются некоторые ограничения.



Эти ограничения могут накладываться на длину очереди , т.е. максимально возможное

число заявок, которые одновременно могут находиться в очереди. В качестве примера такой системы можно привести мастерскую по ремонту автомобилей, имеющую ограниченную по размерам стоянку для неисправных машин, ожидающих ремонта.

Ограничения ожидания могут касаться времени пребывания заявки в очереди , по исте-

чению которого она выходит из очереди и покидает систему).

В СМО с ожиданием и в СМО смешанного типа применяются различные схемы об-

служивания заявок из очереди. Обслуживание может быть упорядоченным , когда заявки из очереди обслуживаются в порядке их поступления в систему, и неупорядоченным , при котором заявки из очереди обслуживаются в случайном порядке. Иногда применяется обслуживание с приоритетом , когда некоторые заявки из очереди считаются приоритетными и поэтому обслуживаются в первую очередь.

По ограничению потока заявок:

замкнутые и открытые .

Если поток заявок ограничен и заявки, покинувшие систему, могут в нее возвращать-

ся, то СМО является замкнутой , в противном случае – открытой .

По количеству этапов обслуживания:

однофазные и многофазные

Если каналы СМО однородны, т.е. выполняют одну и ту же операцию обслужива-

ния, то такие СМО называются однофазными . Если каналы обслуживания расположены последовательно и они неоднородны, так как выполняют различные операции обслуживания (т.е. обслуживание состоит из нескольких последовательных этапов или фаз), то СМО называется многофазной . Примером работы многофазной СМО является обслуживание автомобилей на станции технического обслуживания (мойка, диагностирование и т.д.).