Реферат: Физические основы пластичности и прочности металлов. Механические и пластические свойства материалов На свойстве пластичности основано применение

Реферат

по дисциплине:

"Технология конструкционных материалов"

"Физические основы пластичности и прочности металлов"

Выполнил студент

Проверил преподаватель


Введение

Основными механическими свойствами являются прочность, пластичность, упругость, вязкость, твердость.

Зная механические свойства, конструктор при проектировании обоснованно выбирает соответствующий материал, обеспечивающий надежность и долговечность машин и конструкций при их минимальной массе.

Пластичность и прочность относятся к важнейшим свойствам твердых тел.

Оба эти свойства, взаимно связанные друг с другом, определяют собой способность твердых тел противостоять необратимому формоизменению и макроскопическому разрушению, т. е. разделению тела на части в результате возникающих в нем под воздействием внешних или внутренних силовых полей микроскопических трещин.

Для технолога очень важное значение имеет пластичность, определяющая возможность изготовления изделий различными способами обработки давлением, основанными на пластическом деформировании металла.

Материалы с повышенной пластичностью менее чувствительны к концентраторам напряжений и другим факторам охрупчивания.

По показателям прочности, пластичности и т. д. производят сравнительную оценку различных металлов и сплавов, а также контроль их качества при изготовлении изделий.

В физике и технике пластичность - способность материала получать остаточные деформации без разрушения и сохранять их после снятия нагрузки.

Свойство пластичности имеет решающее значение для таких технологических операций, как штамповка, вытяжка, волочение, гибка и др.

Прочность твёрдых тел, в широком смысле - свойство твёрдых тел сопротивляться разрушению (разделению на части), а также необратимому изменению формы (пластической деформации) под действием внешних нагрузок. В узком смысле - сопротивление разрушению.

Цель настоящей работы – изучить физические основы пластичности и прочности металлов.

1. Физические основы прочности металлов

Прочность является фундаментальным свойством твердых,тел. Она определяет способность тела противостоять без разрушения действию внешних сил. В конечном счете, как известно, прочность определяется величиной и характером межатомной связи, структурной и атомно-молекулярной подвижностью частиц, составляющих твердое тело. Механизм этого явления остается нерешенным и в настоящее время. Остается невыясненным вопрос о природе прочности, о сущности процессов, протекающих в материале, находящемся под нагрузкой. В вопросах прочности не только нет законченной физической теории, но даже по самым основным представлениям существуют расхождения во взглядах и противоположные мнения.

Конечной целью изучения механизма разрушения должно быть выяснение основных принципов создания новых материалов с заданными свойствами, улучшения существующих материалов и рационализация способов их обработки.

Прочностью называют свойство твердых тел сопротивляется разрушению, а также необратимыми изменениями формы. Основным показателем прочности является временное сопротивление, определяемое при разрыве цилиндрического образца, предварительно подвергнутого отжигу. По прочности металлы можно разделить на следующие группы:

непрочные (временное сопротивление не превышает 50 МПа) - олово, свинец, висмут, а также мягкие щелочные металлы;

прочные (от 50 до 500 МПа) - магний, алюминий, медь, железо, титан и другие металлы, составляющие основу важнейших конструкционных сплавов;

высокопрочные (более 500 МПа) - молибден, вольфрам, ниобий и др.

К ртути понятие прочности неприменимо, поскольку это жидкость.

Временное сопротивление металлов указано в таблице 1.


Таблица 1.

Прочность металлов

Большинство технических характеристик прочности определяют в результате статического испытания на растяжение. Образец, закрепленный в захватах разрывной машины, деформируется при статической, плавно возрастающей нагрузке. При испытании, как правило, автоматически записывается диаграмма растяжения, выражающая зависимость между нагрузкой и деформацией. Небольшие деформации с очень большой точностью определяются тензометрами.

Чтобы исключить влияние размеров образцов, испытания на растяжение проводят на стандартных образцах с определенным соотношением между расчетной длиной l 0 и площадью поперечного сечения F 0 .

Наиболее широко применяют образцы круглого сечения: длинные с l 0 /d 0 = 10 или короткие с l 0 /d 0 = 5 (где d 0 - исходный диаметр образца).

На рис. 1, а приведена диаграмма растяжения малоуглеродистой отожженной стали. При нагрузке, соответствующей начальной части диаграммы, материал испытывает только упругую деформацию, которая полностью исчезает после снятия нагрузки.

До точки а эта деформация пропорциональна нагрузке или действующему напряжению

где Р - приложенная нагрузка; F o - начальная площадь поперечного сечения образца.

Нагрузке в точке а, определяющей конец прямолинейного участка диаграммы растяжения, соответствует предел пропорциональности.

Теоретический предел пропорциональности - максимальное напряжение, до которого сохраняется линейная зависимость между напряжением (нагрузкой) и деформацией

σ пц = Р пц /F 0.

Так как при определении положения точка а на диаграмме могут быть погрешности, обычно пользуются условным пределом пропорциональности , под которым понимают напряжение, вызывающее определенную величину отклонения от линейной зависимости, например tg альфа изменяется на 50% от своего первоначального значения.

Прямолинейную зависимость между напряжением и деформацией можно выразить законом Гука:

σ = Е эпсилон,

где эпсилон = (дельта l/l о) 100% - относительная деформация;

дельта l - абсолютное удлинение, мм;

l 0 - начальная длина образца, мм.

Рис.1 Диаграмма растяжения малоуглеродистой стали (а) и схема определения условного предела текучести σ0,2 (б)

Коэффициент пропорциональности Е (графически равный tg aльфа), характеризующий упругие свойства материала, называется модулем нормальной упругости.

При заданной величине напряжения с увеличением модуля уменьшается величина упругой деформации, т. е. возрастает жесткость (устойчивость) конструкции (изделия). Поэтому модуль Е также называют модулем жесткости.

Величина модуля зависит от природы сплава и изменяется незначительно при изменении его состава, структуры, термической обработки.

Например, для различных углеродистых и легированных сталей после любой обработки Е = 21000 кгс/мм 2 .

Теоретический предел упругости - максимальное напряжение, до которого образец получает только упругую деформацию:

σ уп = Р уп /F 0 .

Если действующее напряжение в детали (конструкции) меньше σ уп, то материал будет работать в области упругих деформаций.

Ввиду трудности определения σ уп практически пользуются условным пределом упругости , под которым понимают напряжение, вызывающее остаточную деформацию 0,005-0,05% от начальной расчетной длины образца. В обозначении условного предела упругости указывают величину остаточной деформации, например σ0,005 и т. д.

Для большинства материалов теоретические пределы упругости и пропорциональности близки по величине. Для некоторых материалов, например меди, предел упругости больше предела пропорциональности.

Предел текучести - физический и условный- характеризует сопротивление материала небольшим пластическим деформациям.

Физический предел текучести - напряжение, при котором происходит увеличение деформации при постоянной нагрузке

σ т = P Т /F 0 .

Ha диаграмме растяжения пределу текучести соответствует горизонтальный участок с - d, когда наблюдается пластическая деформация (удлинение) - «течение» металла при постоянной нагрузке.

Большая часть технических металлов и сплавов не имеет площадки текучести. Для них наиболее часто определяют условный предел текучести - напряжение, вызывающее остаточную деформацию, равную 0,2% от начальной расчетной длины образца (рис. 1, б):

σ0,2 =Р 0,2 /F 0

При дальнейшем нагружении пластическая деформация все больше увеличивается, равномерно распределяясь по всему объему образца.

В точке В, где нагрузка достигает максимального значения, в наиболее слабом месте образца начинается образование «шейки» - сужения поперечного сечения; деформация сосредоточивается на одном участке - из равномерной переходит в местную.

Напряжение в материале в этот момент испытания называют пределом прочности.

При проектировании элементов конструкции и деталей машин необходимо знать механические и пластические свойства материалов. Для этого изготавливаются стандартные образцы, которые подвергаются разрушению в испытательной машине. Для испытания на растяжение рекомендуется применять цилиндрические и плоские образцы. Расчетная длина цилиндрических образцов должна быть равной ℓ 0 =5d 0 или ℓ 0 =10d 0 . Образцы с расчетной длиной ℓ 0 =5d 0 называются короткими, а образцы с ℓ 0 =10d 0 – длинными. Применение коротких образцов предпочтительнее. В качестве основных применяют образцы диаметром d 0 =10 мм. Образцы с меньшими (иногда большими) диаметрами или некруглого поперечного сечения называются пропорциональными. Расчетная длина ℓ 0 на образце отличается рисками.

Расчетную длину образца можно выразить через площадь поперечного сечения:

Таким образом, для коротких образцов:

для длинных образцов:

Эти соотношения используются для определения расчетной длины образцов прямоугольного поперечного сечения.

Соотношения между рабочей ℓ и расчетной ℓ 0 длинами принимают:

для цилиндрических образцов: от ℓ = ℓ 0 + 0,5d 0 до ℓ = ℓ 0 + 3d 0 ;

для плоских образцов толщиной 4 мм и больше:

Основной задачей испытания на растяжение является построение диаграммы растяжения, т. е. зависимости между силой, действующей на образец и его удлинением.

Испытательная машина сообщает образцу принудительное удлинение и регистрирует силу сопротивления образца, т. е. нагрузку, соответствующую этому удлинению. Результаты опыта записываются с помощью диаграммного аппарата на бумагу в виде диаграммы растяжения в координатах F – Δℓ. Типичная для малоуглеродистой стали диаграмма растяжения образца показана на рисунке.

Данную кривую условно можно разделить на четыре участка. Прямолинейный участок ОА называется участком упругости. Здесь материал образца испытывает только упругие деформации. Зависимость между нагрузкой на образец и его деформацией подчиняется закону Гука:

Удлинение Δℓ на участке ОА очень мало.

Участок ВК называется участком общей текучести, а отрезок ВК – площадкой текучести. Здесь происходит существенное изменение длины образца без заметного увеличения нагрузки. Наличие площадки текучести является характерным для малоуглеродистой стали.

Участок КС называется участком упрочнения . Здесь материал вновь обнаруживает способность повышать сопротивление при увеличении деформации. Область упрочнения материала на диаграмме растяжения простирается до точки С, ордината которой равна наибольшей нагрузке на образец F max .

Начиная с точки С резко меняется характер деформации образца. При возрастании нагрузки на образец от 0 до F все участки образца удлинялись одинаково – образец испытывал равномерную деформацию. По достижении максимальной нагрузки деформация образца начинает сосредотачиваться в каком-то наиболее слабом месте по его длине. В дальнейшем удлинение образца происходит с уменьшением силы (участок СД). Удлинение образца при этом носит местный характер. В этом месте образца интенсивно уменьшаются размеры поперечного сечения (образуется так называемая шейка) и увеличивается длина этого участка. Поэтому участок СД называется участком местной текучести . Точка Д на диаграмме соответствует разрушению образца.

Если испытуемый образец не доводить до разрушения, разгрузить (например, в точке Н), то в процессе разгрузки зависимость между силой Р и удлинением Δℓ изобразится прямой НМ, которая будет параллельна ОА. Длина разгруженного образца будет больше первоначальной на величину ОН. Отрезок ОМ представляет собой остаточное или пластическое удлинение. При повторном нагружении образца диаграмма растяжения принимает вид прямой НМ и далее – кривой НСД, как будто промежуточной разгрузки и не было.

Ряд пластичных материалов (легированные стали, бронзы, латуни, алюминиевые сплавы, титановые сплавы и др.) не имеют физического предела текучести. На диаграмме растяжения таких материалов, после точки В происходит быстрое возрастание пластической деформации. Уловный предел текучести F т соответствует точке В на диаграмме растяжения, определяется как нагрузка, при которой пластическая деформация равна 0,2 %.

Чтобы дать количественную оценку механическим свойствам материала диаграмму растяжения F= f (Δℓ) (перестраивают в координатах. Для этого значения силы F делят на первоначальную площадь образца А 0 , т. е. = F/ А 0 , а удлинение Δℓ делятся на первоначальную длину расчетной части образца ℓ 0 ,

В результате получаем диаграмму зависимости нормального напряжений от относительной продольной деформации, которая будет характеризовать свойства материала, а не свойства конкретного образца. Эта диаграмма называется условной , так как при вычислении и не учитываются изменения длины и площади поперечного сечения образца в процессе растяжения.

Основными механическими характеристиками являются:

Предел пропорциональности: σ пц = F пц / А 0

Предел текучести: σ т = F т / А 0

Предел прочности: σ в = F в / А 0

Характеристики пластичности:

относительное удлинение

относительное сужение

где А ш – площадь сечения образца (шейки) в самом узком месте после разрушения.

Удельная работа деформации: а = F в Δℓ / V,

где V – объем испытуемого образца,

V = А 0 ·ℓ 0 .

Напомним, что максимальные напряжения σ в не могут превышать 1200 МПа у конструкционных материалов.

Диаграмма сжатия пластичных материалов

Образцы из стали закладывают в испытательную машину и подвергают сжатию.

В первой стадии нагружения стального образца материал испытывает упругие деформации. Зависимость между прикладываемой силой и деформацией на диаграмме линейная. Через некоторое время после начала испытания материал достигает состояния текучести. Стрелка силометра при этом останавливается, и на диаграмме ординаты перестают расти. Образец деформируется при постоянной нагрузке. Нагрузку, соответствующую состоянию текучести F Т материала записываем в журнал испытаний. При дальнейшем сжатии образца показания силометра вновь начинают возрастать. Образец непрерывно сжимается, поперечное сечение его увеличивается, и при отсутствии смазки по торцам образца он приобретает бочкообразную форму. Это объясняется тем, что между опорными плитами и торцами образца действует сила трения, которая не дает возможности частям образца, примыкающим к опорным плитам, двигаться в поперечном направлении. Смазкой торцов образца это явление можно ослабить.

Стальной образец довести до разрушения не удается . Испытание прекращается при нагрузке примерно в два раза больше предела текучести F Т. Вид образцов до и после испытания показан на рисунке. Типичная диаграмма сжатия малоуглеродистой стали в координатах F – Δℓ показана на рис. справа.

Диаграмма растяжения и сжатия хрупких материалов

Методика испытания хрупких материалов такова, как и для испытания пластичных. Поэтому остановимся на основных отличиях в поведении хрупких материалов. На рисунке показана диаграмма сжатия (кривая 1) и растяжения (кривая 2).

У хрупких материалов всегда отсутствует площадка текучести , хотя многие материалы обладают определенными пластическими свойствами. Для этих материалов за опасное состояние принимается предел прочности . Следует всегда помнить, что предел прочности у хрупких материалов во много раз больше при сжатии . У чугуна эта величина достигает 3-4 раза. Что касается строительных материалов, то эта разница может достигать десятикратного размера.


Естественно, что свойства свежеприготовленной растворной смеси и затвердевшего раствора совершенно различны. Основными свойствами растворной смеси являются удобоукладываемость, пластичность (подвижность) и водоудерживающая способность, а затвердевших растворов - плотность, прочность и долговечность.
Правильный выбор области применения растворов всецело зависит от их свойств.

Свойства растворных смесей

Удобоукладываемость - свойство растворной смеси легко укладываться плотным и тонким слоем на пористое основание и не расслаиваться при хранении, транспортировании и перекачивании насосами.
Она зависит от пластичности (подвижности) и водоудерживающей способности смеси.

Пластичность смеси характеризуют ее подвижностью, т. е. способностью растекаться под действием собственного веса или приложенных к ней внешних сил. Подвижность почти всех растворных смесей определяют глубиной погружения (в см) стандартного конуса массой (300:4:2) г.
Высота конуса 180 мм, диаметр основания 150 мм, угол при вершине 30 °.
В лаборатории конус устанавливают на штативе (рис. 1,а), в условиях строительной площадки его подвешивают на цепочке с кольцом (рис. 1,6).


Рис.1. Штатив

Конус 3, удерживаемый за кольцо, подносят к смеси так, чтобы он вершиной касался ее поверхности. Затем конус отпускают и он погружается в смесь под действием собственного веса.
По делениям на шкале 6 или на поверхности конуса определяют глубину погружения его в смесь.Если конус погрузился на глубину 6 см, это значит, что подвижность растворной смеси равна 6 см.

Подвижность растворной смеси зависит прежде всего от количества воды и вяжущего, вида вяжущего и заполнителя, соотношения между вяжущим и заполнителем. Жирные растворные смеси подвижнее тощих. При прочих равных условиях растворы на извести и глине более подвижны, чем на цементе; растворы на природном песке подвижнее растворов на песке искусственном (дробленом).
Вид вяжущего подбирают и состав раствора задают в зависимости от требуемой прочности раствора и условий эксплуатации здания.

Подвижность растворной смеси можно регулировать, увеличивая или уменьшая расход вяжущею или воды. Увеличивая в растворной гмеси содержание воды и вяжущего, получают более пластичные (подвижные) и удобоукладываемые смеси

Удобоукладываемая растворная смесь получается при правильно назначенном зерновом составе ее твердых составляющих (песка, вяжущего, добавки). Тесто вяжущего не только заполняет пустоты между зернами песка, но и равномерно обволакивает песчинки тонким слоем, уменьшая внутреннее трение.
Растворная смесь с нормальной водоудерживающей способностью - удобообрабатываемая и удобоукладываемая, мягкая, не тянется за лопатой штукатура, обеспечивает высокую производительность труда.

От удобоукладываемости смеси зависит качество каменной кладки и штукатурки.
Правильно подобранная и хорошо перемешанная растворная смесь плотно заполняет неровности, углубления, трещины в основании, поэтому получается большая площадь контакта между раствором и основанием, в результате возрастает монолитность кладки и штукатурки, увеличивается их долговечность.

Расслаиваемость - способность растворной смеси разделяться на твердую и жидкую фракции при транспортировании и перекачивании ее по трубам и шлангам.
Растворную смесь часто перевозят автосамосвалами и перемещают по трубопроводам с помощью растворонасосов. При этом не редки случаи, когда смесь разделяется на воду (жидкая фаза) и песок и вяжущее (твердая фаза), в результате чего в трубах и шлангах могут образоваться пробки, устранение которых связано с большими потерями труда и времени.
Расслаиваемость растворной смеси определяют в лаборатории.

Проверить смесь на расслаиваемость упрощенно можно так. В ведро помещают растворную смесь слоем высотой около 30 см и определяют ее подвижность эталонным конусом. Через 30 мин снимают верхнюю часть раствора (около 20 см) и вторично определяют глубину погружения конуса. Если разность значений погружения конуса близка нулю, то растворную смесь считают нерасслаивающейся, если она находится в пределах 2 см - смесь считают средней расслаиваемости.
Разность значений погружения конуса более 2 см свидетельствует о том, что растворная смесь расслаивается.

Если состав растворной смеси подобран правильно и водовяжущее отношение назначено верно, то растворная смесь будет подвижной, удобоукладываемой, она будет обладать хорошей водоудерживающей способностью и не будет расслаиваться.
Пластифицирующие добавки как неорганические, так и органические повышают водоудерживающую способность растворных смесей и уменьшают их расслаиваемость

ПЛАСТИЧНОСТЬ – свойство твердых тел изменять форму и размеры под влиянием внешних нагрузок и сохранять ее, когда нагрузки перестают действовать (после снятия нагрузок).

Первое представление о свойстве материала, называемом пластичностью, дает комок пластилина, который под давлением пальцев легко меняет форму, и сохраняет новую форму после действия на него (в отличие о растянутой пружинки, которая опять сожмется, если ее отпустить В этом смысле говорят, что пружинка упруга, а пластилин пластичен. Пластилин и пластичность – слова одного корня, от греческого слова пластика, что значит лепка, от глагола «лепить» (из глины).

Чтобы получить более точное представление о свойстве пластичности, можно сделать (или представить себе) простой опыт. Пусть есть вытянутый параллелепипед (стержень) из пластилина, длинное ребро которого составляет приблизительно 10 см, а малая грань представляет собой квадрат 1 см × 1 см. Пусть этот стержень опирается концами на две опоры («мостик»). Если на средину стержня класть металлические грузики (например, монеты), то пока нагрузка невелика, изменение формы стержня на глаз незаметно. При дальнейшем нагружении обнаруживается, что в некоторый момент стержень прогибается и становится криволинейным. Если убрать все грузики, криволинейная форма все равно сохранится.

Этот опыт показывает, что стержень из материала, обладающего свойством пластичности, сопротивляется действию нагрузок, почти не изменяя свою форму, до тех пор, пока нагрузка не превысит некоторый порог, после чего происходит заметное изменение формы, сохраняющееся и после снятия нагрузки. В этом суть пластичности, но не вся – изменение формы (деформирование) зависит только от приложенной нагрузки и не изменяется само по себе с течением времени. Если деформирование при неизменной нагрузке все же происходит, то материал называют не пластическим, а вязкопластическим или вязкоупругим (см . РЕОЛОГИЯ; ПОЛЗУЧЕСТЬ). Конечно, пластилин – это знакомый и наглядный пример пластического материала. Важно то, что свойство пластичности присуще очень многим конструкционным материалам. В первую очередь, это – металлы и сплавы – сталь, железо, медь, алюминий и другие, но представление о пластическом деформировании оказывается очень полезным и для понимания процессов деформирования композиционных материалов, в том числе металлокерамических, углеродных и полимерных.

Пластичность материала как бы противопоставлена упругости: пластическое тело сохраняет приданную ему форму, а упругое – восстанавливает первоначальную. Но пластичность противопоставляется еще и хрупкости: пластическое тело отвечает на увеличение нагрузки заметным изменением формы, а хрупкое (например, стекло) – появлением трещин и разрушением.

Изучение пластичности развивается по двум направлениям: одно из них связано, в первую очередь, с проблемами техники и цель его – ответ на вопрос: если конструкция подвергается воздействию внешних сил известной величины, каково при этом меняется форма – т.е. как она деформируется? Это важно знать конструктору, но есть и еще одно важное обстоятельство: обычно пластичность предшествует разрушению, так что изучение пластических деформаций является основой прогноза прочности и долговечности конструкции.

Второе направление изучения пластичности – это исследование того, что происходит в материале, как говорят, на микроуровне, т.е., что происходит внутри материала, например, при пластическом изгибе балки. Можно, по аналогии с опытом на изгиб стержня, сделать опыт на его растяжение: верхний конец стержня (его обычно называют образцом) закрепляют, а к нижнему прикладывают нагрузку. В этом случае заметить на глаз изменение длины образца трудно, но если измерять деформации специальными приборами, то обнаруживается, что процесс деформирования оказывается похожим на тот, что и в опыте с изгибом: при постепенном возрастании растягивающей нагрузки сначала проявляются очень малые упругие деформации, когда же нагрузка достигает порогового значения, то деформации (теперь уже, в основном, пластические) становятся, во-первых, более существенными, а, во-вторых, необратимыми (т.е. не исчезают после снятия нагрузки).

При этом обнаруживаются интересные явления. Если в опыте на растяжение использовать стальной образец в виде длинной пластинки с полированной (зеркальной) поверхностью, то в процессе пластического деформирования на этой поверхности появляется много близких тонких параллельных прямых линий, ориентированных под углом 45° к оси образца (ось образца – здесь прямая линия, проходящая посредине пластинки, параллельно ее длинным сторонам). Эти линии называются линиями Людерса – Чернова (по фамилиям открывших их ученых).

Микроскопический анализ этих линий показывает, что они появляются в результате того, что в материале пластинки происходит сдвиг, т.е. один тонкий слой как бы сдвигается относительно второго, второй – относительно третьего и т.д., как карты в колоде. Можно сказать, что линии Людерса – Чернова и есть границы сдвигающихся слоев. На рис.1 схематически изображена картина такого деформирования. Эта схема позволяет понять, как такие сдвиги приводят к пластическому удлинению образца и почему после снятия нагрузки пластические деформации не исчезают. Более сложные и точные опыты показали, что пластические деформации металлов и сплавов всегда вызываются сдвигами внутри материала. Кроме того, в пористых материалах происходят деформации, по внешним проявлениям очень сходные с пластическими, но связанные с уменьшением пор. Наиболее знакомым пористым материалом является пенопласт; в технике пористые материалы создает порошковая металлургия, где детали прессуются из металлического порошка.

Можно довольно точно описать картину деформирования, считая, что упругие деформации тела – это результат изменения расстояния между атомами, из которых оно состоит, а пластические деформации – результат сдвигов.

Итак, пластичность – результат сдвигов. А как происходят сами сдвиги? На этот вопрос (и на многие другие) отвечают разделы физики: физика твердого тела, теория дислокаций, физика металлов и т.д.

Таковы два направления, по которым исследуется пластичности, первое называется феноменологическим – оно изучает феномен пластичности так, как его можно наблюдать в опытах с образцами и нагрузками, и не опирается на результаты микроскопических опытов. Феноменологическое изучение пластичности металлов начинается с классического опыта на растяжение. Его результаты представляются в виде графиков (рис. 2), где по вертикальной оси откладывается напряжение s, равное растягивающей силе P , отнесенной к площади сечения образца F , т.е.

s = P /F

а по горизонтали – деформация образца e, равная удлинению dl образца (под действием силы P ), отнесенному к его первоначальной длине l .

e = dl /l

На рис. 2 изображен график, который называется «кривой растяжения»; материал – одна из марок стали. В начале нагружения (на графике от точки O до точки A ) напряжение и деформация оказываются пропорциональными, т.е. имеет место закон Гука . Коэффициент пропорциональности называется модулем упругости (или модулем Юнга) E . Точка A на графике называется пределом упругости – после нее пропорциональность, свойственная упругости, сменяется криволинейной зависимостью, причем теперь деформация растет значительно быстрее, чем напряжение. Если в некоторой точке B мы начнем уменьшать напряжение (это называется разгрузкой), то на графике получится кривая, мало отличающаяся от прямой – BC со стрелкой вниз. Если, доведя напряжение до нуля, снова его увеличивать, на графике получится кривая CB 1 (со стрелкой вверх), причем далее эта кривая плавно перейдет в кривую B 1D , которая получилась бы при деформировании образца без разгрузки. Для простоты обычно обе кривые, BC и CB 1, заменяют отрезком прямой B 2C , который параллелен отрезку OA .

Есть несколько вариантов теории пластичности, которые отличаются, с одной стороны, тем, насколько точно они учитывают реальные особенности процесса деформирования упруго-пластического материала, и, с другой стороны, используемым математическим аппаратом. Одни теории являются менее точными, но более простыми и удобными для расчетов, что очень важно, так как расчет пластических деформаций в телах сложной формы представляет собой очень трудную задачу даже при использовании современных компьютеров. Другие теории могли бы обеспечить высокую точность, но приводят к очень большим трудностям, как математическим, так и экспериментальным. По-видимому, создание «идеальной» теории, сочетающей физическую наглядность, математическую простоту и в то же время обеспечивающей адекватное описание процессов пластического деформирования, является делом будущего. Но даже «простые» теории пластичности на самом деле достаточно сложны, так как требуют знания и понимания многих экспериментальных результатов и серьезной математической подготовки. В качестве примера можно рассмотреть идею самой простой теории пластичности.

В самом простом случае опыта на растяжение образца процесс упругого деформирования описывается законом Гука

За пределом упругости пропорциональности нет, но экспериментальную кривую растяжения можно описать, если считать, что модуль упругости E при этом перестает быть постоянной величиной и становится функцией деформации, т.е.

В этих формулах появляется новая функция w = w(e), которая называется функцией пластичности и должна быть найдена из экспериментальных данных.

Видно, что функция w(e) тождественно равна нулю при упругих деформациях и возрастает при пластических. Тогда ясно, что и упругие, и пластические деформации описываются уравнением, обобщающим закон Гука

s = E e

Это уравнение описывает кривую деформирования, из которой оно, по существу, и получено и это так, пока речь идет только об опыте на растяжение. Но теория пластичности должна «уметь» описывать любые процессы деформирования – например, и кручение, и изгиб , и их совместное проявление, а для этого формулу необходимо существенно обобщить и сформулировать аналогичные по сути, но неизмеримо более сложные соотношения, которые связывали бы шесть компонент тензора деформаций с шестью компонентами тензора напряжений. Здесь и начинаются сложности.

Классическая деформационная теория называется «теорией малых упругопластических деформаций». Эта теория основана на трех экспериментальных фактах:

1. При различных упругопластических деформациях в каждой точке тела существует универсальная функциональная зависимость между среднеквадратичным значением сдвиговых деформаций и аналогичным среднеквадратичным значением сдвиговых напряжений.

2. При упругопластическом деформировании материала изменение объема всегда происходит упруго.

3. Первые два утверждения справедливы только при условии, что все внешние силы, действующие на тело, возрастают пропорционально друг другу (точнее – пропорционально одному параметру, например, времени). Это так называемое «простое» или «пропорциональное» нагружение.

Чтобы правильно понять эти три утверждения, нужно принять во внимание следующее:

Теория пластичности, как и все эмпирические теории, по своему существу является теорией приближенной. Это означает, что при известных условиях, когда она может описывать физическую реальность («условия применимости»), эмпирическая теория эту реальность описывает с относительно небольшой, но всегда присутствующей погрешностью (проще говоря, с небольшой ошибкой).

Теория пластичности, о которой идет речь, может дать ответ с погрешностью, близкой к 10%. И почти всегда такая погрешность оказывается вполне приемлемой – говорят, что «теория хорошо работает».

Математическая формулировка теории: пусть есть тензор деформации e ij и тензор напряжений sij . Требуется написать формулы (соотношения), которые связывают эти тензоры при малых упругопластических деформациях, подобно тому, как закон Гука связывает их при упругих деформациях.

Учитывая различные закономерности объемного и сдвигового деформирования, можно разделить тензоры на объемную (шаровую) и сдвиговую (девиаторную) части:

e ij = 1/3 Q dij + e ij

Следующий шаг – установление связи сдвиговых напряжений с деформацииями, поскольку пластичность – это сдвиги.

Для девиатора деформаций среднеквадратичный сдвиг в данной точке определяется формулой

Аналогично, среднеквадратичное сдвиговое напряжение определяется:

Это и есть универсальная функциональная зависимость между и , а универсальна она в том смысле, что имеет место в любой точке тела и при любом виде деформаций (изгиб, кручение, их комбинация и т.д.). Функция считается известной, а фактически должна быть найдена из обработки результатов эксперимента. Так как в силу универсальности она одинакова всегда, в частности, в любом опыте, то удобно использовать опыт на кручение трубки, из которого эта функция определяется особенно легко.

В пределах упругости , и зависимость между

Пластичность – свойство металла пластически деформироваться, не разрушаясь под действием внешних сил. Под пластической деформацией понимается способность материалов изменять свою форму и размеры под действием внешних сил и сохранять эти изменения после снятия нагрузки.

Характеристики пластичности – относительные удлинение δ и сужение площади поперечного сечения ψ . Определяются при проведении испытания материалов на статическое осевое растяжение на тех же стандартных образцах и оборудовании, на которых определялись характеристики статической прочности (см. рис. 1, 2).

Относительным удлинением называется отношение абсолютного удлинения, т. е. приращение расчетной длины образца после разрыва (l k l 0), к его первоначальной расчетной длине l 0 , мм, выраженное в процентах:

где – l k длина расчетной части стандартного образца после разрыва, мм.

Расчетная длина l 0 – участок рабочей длины образца между нанесенными до испытания метками, на котором определяется удлинение (см. рис. 1).

Относительным сужением называется отношение абсолютного сужения, т. е. уменьшение площади поперечного сечения образца после разрыва (F 0 – F k ), к первоначальной площади его поперечного сечения F 0 , мм 2 , выраженное в процентах:

, (9)

где F k – площадь поперечного сечения образца в месте разрыва, мм 2 .

3. Определение характеристик твердости

Твердость – способность материала сопротивляться пластической или упругой деформации при внедрении в него более твердого тела (индентора).

Наибольшее применение получили методы измерения твердости, основанные на вдавливании в испытуемый металл индентора в виде шарика, алмазного конуса и алмазной пирамиды – методы Бринелля, Роквелла и Виккерса (рис. 8).

Метод Бринелля (НВ ). Определение твердости производится на прессе Бринелля (твердомере типа ТШ). Сущность метода заключается в том, что шарик диаметром 10; 5; 2,5 или 1,0 мм под действием определенного усилия, приложенного перпендикулярно поверхности образца, непрерывно вдавливается в испытуемый металл (рис. 8, а). Условия испытания регламентированы ГОСТ 9012-59. Например, измерение твердости стали проводят вдавливанием шарика D = 10 мм под нагрузкой 30 кН (3000 кгс).

Рис. 8. Схема определения твердости

по Бринеллю (а), по Роквеллу (б) и по Виккерсу (в)

После снятия усилия измеряют диаметр сферического отпечатка при помощи отсчетного микроскопа, на окуляре которого имеется шкала с делениями, соответствующими сотым долям миллиметра.

Твердость по Бринеллю обозначают буквами НВ (при применении стального шарика) или HBW (при применении шарика из твердого сплава) и рассчитывают как отношение усилия Р , действующего на шарик, к площади поверхности сферического отпечатка F , кгс/мм 2 или МПа:

, (10)

где P – усилие, действующее на шарик, Н (кгс);

F – площадь поверхности сферического отпечатка, м 2 (мм 2 ) ;

D и d диаметр шарика и отпечатка, мм.

Метод Бринелля рекомендуется применять для металлов с твердостью не более НВ 450 кгс/мм 2 (4500 МПа), так как стальной шарик может деформироваться, что внесет погрешность в результат испытаний. Этот метод используется в основном для измерения твердости заготовок и полуфабрикатов из неупрочненного металла.

Метод Роквелла (HR ). Определение твердости производится на прессе Роквелла (твердомере типа ТК) (ГОСТ 9013-59). Сущность метода заключается в том, что индентор в виде алмазного конуса – для твердых и сверхтвердых (более HRC 70) металлов (стальной закаленный шарик диаметром 1,58 мм – для мягких металлов) (рис. 8, б) − под действием определенного усилия, приложенного перпендикулярно поверхности образца, вдавливается в испытуемый металл. Твердость определяют по глубине отпечатка h . Результаты измерений, в условных единицах, определяют по показанию стрелки на шкале индикатора твердомера (рис. 9).

Ш

Рис. 9. Показания индикатора прибора ТК

арик и конус вдавливаются в металл под действием двух нагрузок – предварительнойР 0 = 10 кгс и основной Р . Общая нагрузка равна сумме двух указанных нагрузок. После предварительного нагруже-ния по индикатору малой стрелки большая стрелка твердомера выставляется на «0» шкалы индикатора и включается основная нагрузка. В момент снятия основ-ной нагрузки большая стрелка перемещается по шкале индикатора и показывает значение твердости.

При вдавливании стального шарика основная нагрузка составляет 100 кгс, отсчет твердости производится по внутренней (красной) шкале «В» индикатора, твердость обозначают НRВ . При вдавливании алмазного конуса в испытуемый образец твердость определяется по показанию стрелки по внешней (черной) шкале «С» индикатора. Для твердых металлов основная нагрузка составляет 150 кг. Это основной метод измерения твердости закаленных сталей. Обозначение твердости – НRC . Для очень твердых металлов, а также материалов деталей малой толщины основная нагрузка принимается равной 60 кг. Обозначение твердости – НRА , например: НRC 40, НRА 90 – твердость по Роквеллу по шкале «С» − 40 условных единиц; по шкале «А» – 90.

Метод определения твердости по Роквеллу позволяет испытывать мягкие и твердые металлы, при этом отпечатки от шарика или конуса очень малы, поэтому с помощью данного метода можно измерять твердость материала готовых деталей. Поверхность для испытания должна быть шлифованной. Измерения выполняются быстро (в течение 30 – 60 с), не требуется никаких вычислений, так как значение твердости снимается по шкале индикатора твердомера.

Метод Виккерса (HV ). При испытании на твердость по методу Виккерса в шлифованную или полированную поверхность материала вдавливается алмазная четырехгранная пирамида с углом при вершине 136º (рис. 8, в). Для определения твердости черных металлов и сплавов применяются нагрузки от 5 до 100 кгс, а для цветных металлов и их сплавов – от 2,5 до 50 кгс. После снятия нагрузки с помощью микроскопа, находящегося при приборе, измеряют диагональ отпечатка d и рассчитывают значение твердости в кгс/мм 2 или в МПа как отношение нагрузки Р , Н (кгс), к площади поверхности пирамидального отпечатка М , м 2 (мм 2):

, (11)

где d – длина диагонали отпечатка, мм.

Например, запись 500 HV означает, что твердость по Виккерсу составляет 500 кгс/мм 2 (5000 МПа).

Метод Виккерса позволяет измерять твердость как мягких, так и очень твердых металлов и сплавов, а также определять твердость тонких поверхностных слоев (например, после проведения химико-термической обработки, закалки токами высокой частоты и т. п.).

Для соизмерения значений твердости, определенных различными способами, применяются переводные таблицы (табл. 1).

Для оценки механических свойств материалов и приблизительного значения предела прочности можно использовать значение твердости, определенной по испытаниям способом Бринелля. Эмпирическое соотношение предела прочности и твердости, определенной по испытаниям способом Бринелля, имеет вид:

σ в 0,33НВ max , (12)

где σ в – временное сопротивление;

НВ max − максимальное значение твердости при нагрузке, с которой начинается плавное понижение твердости.

Таблица 1

Сравнение значений твердости, определенной различными способами

Диаметр отпечатка

По Бринеллю

По Роквеллу

По Виккерсу

НВ , МПа