Условия оптимальности управления. Что такое оптимальное управление? Пример типовой задачи оптимизации

6.2.1. Постановка и классификация задач теории оп­тимального управления. В подавляющем большинстве рас­смотренных нами задач факторы, связанные с изменением изу­чаемых объектов и систем в течение времени, выносились за скобки. Возможно, при выполнении определенных предпосы­лок такой подход является конструктивным и правомерным. Однако очевидно и то, что это допустимо далеко не всегда. Су­ществует обширный класс задач, в которых необходимо найти оптимальные действия объекта, учитывающие динамику его состояний во времени и пространстве. Методы их решения со­ставляют предмет математической теории оптимального управ­ления.

В весьма общем виде задача оптимального управления мо­жет быть сформулирована следующим образом:

Имеется некоторый объект, состояние которого харак­теризуется двумя видами параметров - параметрами состояния и параметрами управления, причем в зависи­мости от выбора последних процесс управления объек­том протекает тем или иным образом. Качество про­цесса управления оценивается с помощью некоторого функционала*, на основе чего ставится задача: найти такую последовательность значений управляющих па­раметров, для которой данный функционал принимает экстремальное значение.

* Функционалом называется числовая функция, аргументами кото­рой, как правило, служат другие функции.

С формальной точки зрения многие проблемы оптимального управления могут быть сведены к задачам линейного или нели­нейного программирования большой размерности, так как каж­дой точке пространства состояний соответствует свой вектор неизвестных переменных. Все же, как правило, движение в дан­ном направлении без учета специфики соответствующих задач не приводит к рациональным и эффективным алгоритмам их ре­шения. Поэтому методы решения задач оптимального управле­ния традиционно связаны с другим математическим аппаратом, берущим свое начало от вариационного исчисления и теории интегральных уравнений. Следует также заметить, что опять-таки в силу исторических причин теория оптимального управ­ления была ориентирована на физические и технические при­ложения, и ее применение для решения экономических задач носит в определенном смысле вторичный характер. В то же вре­мя в целом ряде случаев модели исследования, применяющие аппарат теории оптимального управления, могут привести к содержательным и интересным результатам.

К сказанному выше необходимо добавить замечание о тес­ной связи, существующей между методами, применяемыми для решения задач оптимального управления, и динамическим про­граммированием. В одних случаях они могут использоваться на альтернативной основе, а в других довольно удачно дополнять друг друга.


Существуют различные подходы к классификации задач оп­тимального управления. Прежде всего, их можно классифици­ровать в зависимости от объекта управления:

Ø Ø задачи управления с сосредоточенными параметрами;

Ø Ø задачи управления объектами с распределенными парамет­рами.

Примером первых является управление самолетом как еди­ным целым, а вторых - управление непрерывным технологи­ческим процессом.

В зависимости от типа исходов, к которым приводят приме­няемые управления, выделяют детерминированные и стоха­стические задачи. В последнем случае результатом управле­ния является множество исходов, описываемых вероятностями их наступления.

По характеру изменения управляемой системы во времени различают задачи:

Ø Ø с дискретно изменяющимся временем ;

Ø Ø с непрерывно изменяющимся временем .

Аналогично классифицируются задачи управления объекта­ми с дискретным или непрерывным множеством возможных состояний. Задачи управления системами, в которых время и со­стояния меняются дискретно, получили название задач управле­ния конечными автоматами . Наконец, при определенных ус­ловиях могут ставиться задачи управления смешанными системами.

Многие модели управляемых систем основаны на аппарате дифференциальных уравнений как в обыкновенных, так и в час­тных производных. При исследовании систем с распределенны­ми параметрами, в зависимости от вида используемых диффе­ренциальных уравнений в частных производных, выделяют такие типы задач оптимального управления, как параболиче­ские, эллиптические или гиперболические.

Рассмотрим два простейших примера задач управления эко­номическими объектами.

Задача распределения ресурсов. Имеется т складов с номерами i (i ∊1:m ), предназначенных для хранения однородно­го продукта. В дискретные моменты времени t ∊0:(T -l) проис­ходит его распределение между объектами-потребителями (клиентами) с номерами j , j ∊1:n . Пополнение запаса в пунктах хранения продукта в t -й момент времени определяется величи­нами a i t , i ∊1:m , а потребности клиентов в нем равняются b j t , j ∊1:n . Обозначим через c t i,j - затраты на доставку единицы продукта из i -го склада j -му потребителю в момент времени t. Также предполагается, что продукт, поступивший на склад в момент t , может быть использован, начиная со следующего мо­мента (t +l). Для сформулированной модели ставится задача найти такой план распределения ресурсов {х t i,j } T m xn , который минимизирует суммарные расходы на доставку потребителям продукции со складов в течение полного периода функциониро­вания системы.

Обозначив через х t i,j количество продукта, поставляемое j -му клиенту с i -го склада в t -й момент времени, а через z t i - общее количество продукта на i -м складе, описанную выше про­блему можно представить как задачу нахождения таких сово­купностей переменных

которые обращают в минимум функцию

при условиях

где объемы начальных запасов продукта на складах z 0 i = ž i . пред­полагаются заданными.

Задачу (6.20)-(6.23) называют динамической транспорт­ной задачей линейного программирования . С точки зрения приведенный выше терминологии независимые переменные х t i,j представляют собой параметры управления системой, а зави­сящие от них переменные z t i - совокупность параметров состояния системы в каждый момент времени t. Ограничения z t i ≥ 0 гарантируют, что в любой момент времени с любого скла­да не может быть вывезен объем продукта, превышающий его фактическое количество, а ограничения (6.21) задают правила изменения этого количества при переходе от одного периода к другому. Ограничения данного вида, которые задают условия на значения параметров состояния системы, принято называть фазовыми.

Отметим также, что условие (6.21) служит простейшим при­мером фазовых ограничений, поскольку связываются значения параметров состояния для двух смежных периодов t и t +l. В общем случае может устанавливаться зависимость для груп­пы параметров, принадлежащих нескольким, возможно не­смежным, этапам. Такая потребность может возникнуть, на­пример, при учете в моделях фактора запаздывания поставок.

Простейшая динамическая модель макроэкономики. Представим экономику некоторого региона как совокупность п отраслей (j ∊1:п ), валовой продукт которых в денежном вы­ражении на некоторый момент t может быть представлен в виде вектора z t =(z t 1 , z t 2 ,..., z t n ), где t ∊0:(Т -1). Обозначим через A t матрицу прямых затрат, элементы которой a t i,j , отражают затра­ты продукции i -й отрасли (в денежном выражении) на изготов­ление единицы продукции j -й отрасли в t -й момент времени. Если X t = ║x t i,j n xm - матрица, задающая удельные нормы продукции i -й отрасли, идущей на расширение производства в j -й отрасли, а у t = (у t 1 , у t 2 , ..., у t n ) - вектор объемов продукции от­раслей потребления, идущей на потребление, то условие рас­ширенного воспроизводства можно записать как

где z 0 = ž - исходный запас продукции отраслей предполагает­ся заданным и

В рассматриваемой модели величины z t являются парамет­рами состояния системы, а X t - управляющими параметрами. На ее базе могут быть поставлены различные задачи, типичным представителем которых является задача оптимального вывода экономики на момент Т к некоторому заданному состоянию z *. Данная задача сводится к отысканию последовательности управляющих параметров

удовлетворяющих условиям (6.24)-(6.25) и минимизирующих функцию

6.2.2. Простейшая задача оптимального управления. Один из приемов, применяемых для решения экстремальных задач, состоит в выделении некоторой проблемы, допускающей относительно несложное решение, к которой в дальнейшем могут быть сведены остальные задачи.

Рассмотрим так называемую простейшую задачу управле­ния . Она имеет вид

Специфика условий задачи (6.27)-(6.29) состоит в том, что функции качества управления (6.27) и ограничения (6.28) яв­ляются линейными относительно z t , в то же время функция g (t , х t ), входящая в (6.28), может быть произвольной. Послед­нее свойство делает задачу нелинейной даже при t =1, т. е. в статическом варианте.

Общая идея решения задачи (6.27)-(6.29) сводится к ее «расщеплению» на подзадачи для каждого отдельно взятого момента времени, в предположении, что они успешно разреши­мы. Построим для задачи (6.27)-(6.29) функцию Лагранжа

где λ t - вектора множителей Лагранжа (t ∊0:Т ). Ограничения (6.29), носящие общий характер, в функцию (6.30) в данном случае не включены. Запишем ее в несколько иной форме

Необходимые условия экстремума функции Ф(х, z, λ) по со­вокупности векторов z t задаются системой уравнений

которая называется системой для сопряженных перемен­ных . Как можно заметить, процесс нахождения параметров λ t в системе (6.32) осуществляется рекуррентным образом в об­ратном порядке.

Необходимые условия экстремума функции Лагранжа по переменным λ t будут эквивалентны ограничениям (6.28), и, наконец, условия ее экстремума по совокупности векторов х t Х t , t ∊1:(Т -1) должны быть найдены как результат реше­ния задачи

Таким образом, задача поиска оптимального управления сво­дится к поиску управлений, подозрительных на оптимальность, т. е. таких, для которых выполняется необходимое условие оп­тимальности. Это, свою очередь, сводится к нахождению таких t , t , t , удовлетворяющих системе условий (6.28), (6.32), (6.33), которая называется дискретным принципом максиму­ма Понтрягина.

Справедлива теорема.

Доказательство.

Пусть t , t , t , удовлетворяют системе (6.28), (6.32), (6.33). Тогда из (6.31) и (6.32) следует, что

и поскольку t удовлетворяет (6.33), то

С другой стороны, в силу (6.28) из (6.30) следует, что при любом векторе t

Следовательно,

Применяя теорему (6.2), а также положения теории нели­нейного программирования, касающиеся связи между решени­ем экстремальной задачи и существованием седловой точки (см. п. 2.2.2), приходим к выводу о том, что векторы t , t явля­ются решением простейшей задачи оптимального управления (6.27)-(6.29).

В результате мы получили логически простую схему реше­ния данной задачи: из соотношений (6.32) определяются сопря­женные переменные t , затем в ходе решения задачи (6.33) на­ходятся управления t и далее из (6.28) - оптимальная траектория состояний t ,.

Предложенный метод относится к фундаментальным резуль­татам теории оптимального управления и, как уже это упомина­лось выше, имеет важное значение для решения многих более сложных задач, которые, так или иначе, сводятся к простей­шей. В то же время очевидны и пределы его эффективного ис­пользования, которые целиком зависят от возможности реше­ния задачи (6.33).

КЛЮЧЕВЫЕ ПОНЯТИЯ

Ø Ø Игра, игрок, стратегия.

Ø Ø Игры с нулевой суммой.

Ø Ø Матричные игры.

Ø Ø Антагонистические игры.

Ø Ø Принципы максимина и минимакcа.

Ø Ø Седловая точка игры.

Ø Ø Цена игры.

Ø Ø Смешанная стратегия.

Ø Ø Основная теорема матричных игр.

Ø Ø Динамическая транспортная задача.

Ø Ø Простейшая динамическая модель макроэкономики.

Ø Ø Простейшая задача оптимального управления.

Ø Ø Дискретный принцип максимума Понтрягина.

КОНТРОЛЬНЫЕ ВОПРОСЫ

6.1. Кратко сформулируйте предмет теории игр как научной дисциплины.

6.2. Какой смысл вкладывается в понятие «игра»?

6.3. Для описания каких экономических ситуаций может быть применен аппарат теории игр?

6.4. Какая игра называется антагонистической?

6.5. Чем однозначно определяются матричные игры?

6.6. В чем заключаются принципы максимина и минимакcа?

6.7. При каких условиях можно говорить о том, что игра име­ет седловую точку?

6.8. Приведите примеры игр, которые имеют седловую точку и в которых она отсутствует.

6.9. Какие подходы существуют к определению оптимальных стратегий?

6.10. Что называют «ценой игры»?

6.11. Дайте определение понятию «смешанная стратегия».

СПИСОК ЛИТЕРАТУРЫ

1. Абрамов Л. М., Капустин В. Ф. Математическое про­граммирование. Л.,1981.

2. Ашманов С. А. Линейное программирование: Учеб. посо­бие. М., 1981.

3. Ашманов С. А., Тихонов А. В. Теория оптимизации в зада­чах и упражнениях. М., 1991.

4. Беллман Р. Динамическое программирование. М., 1960.

5. Беллман Р., Дрейфус С. Прикладные задачи динамичес­кого программирования. М., 1965.

6. Гавурин М. К., Малоземов В. Н. Экстремальные задачи с линейными ограничениями. Л., 1984.

7. Гасс С. Линейное программирование (методы и приложе­ния). М., 1961.

8. Гейл Д . Теория линейных экономических моделей М., 1963.

9. Гилл Ф., Мюррей У., Райт М. Практическая оптимиза­ция / Пер. с англ. М., 1985.

10. Давыдов Э. Г. Исследование операций: Учеб. пособие для студентов вузов. М., 1990.

11. Данциг Дж. Линейное программирование, его обобще­ния и применения. М.,1966.

12. Еремин И. И., Астафьев Н. Н. Введение в теорию линей­ного и выпуклого программирования. М., 1976.

13. Ермольев Ю.М., Ляшко И.И., Михалевич В.С., Тюптя В.И. Математические методы исследования операций: Учеб. пособие для вузов. Киев, 1979.

14. Зайченко Ю. П. Исследование операций, 2-е изд. Киев, 1979.

15. Зангвилл У. И. Нелинейное программирование. Единый подход. М., 1973.

16. Зойтендейк Г. Методы возможных направлений. М., 1963.

17. Карлин С. Математические методы в теории игр, про­граммировании и экономике. М., 1964.

18. Карманов В. Г. Математическое программирование: Учеб. пособие. М., 1986.

19. Корбут А.А., Финкелыитейн Ю. Ю. Дискретное про­граммирование. М., 1968.

20. Кофман А., Анри-Лабордер А. Методы и модели иссле­дования операций. М., 1977.

21. Кюнце Г.П., Крелле В. Нелинейное программирование. М.,1965.

22. Ляшенко И.Н., Карагодова Е.А., Черникова Н.В., Шор Н.3. Линейное и нелинейное программирование. Киев, 1975.

23. Мак-Кинси Дж. Введение в теорию игр. М., 1960.

24. Мухачева Э. А., Рубинштейн Г. Ш. Математическое программирование. Новосибирск, 1977.

25. Нейман Дж., Моргенштерн О. Теория игр и экономи­ческое поведение. М, 1970.

26. Оре О. Теория графов. М., 1968.

27. Таха X. Введение в исследование операций/ Пер. с англ. М.,1985.

28. Фиакко А., Мак-Кормик Г. Нелинейное программирова­ние. Методы последовательной безусловной минимизации. М.,1972.

29. Хедли Дж. Нелинейное и динамическое программирова­ние. М., 1967.

30. Юдин Д.Б., Гольштейн Е.Г. Линейное программирова­ние (теория, методы и приложения). М., 1969.

31. Юдин Д.Б., Гольштейн Е.Г. Линейное программирова­ние. Теория и конечные методы. М., 1963.

32. Lapin L. Quantitative methods for business decisions with cases. Fourth edition. HBJ, 1988.

33. Liitle I.D.C., Murty K.G„ Sweeney D.W., Karel C. An al­gorithm for traveling for the traveling salesman problem. - Operation Research, 1963, vol.11, No. 6, p. 972-989/ Русск. пер.: Литл Дж., Мурти К., Суини Д., Керел К. Алгоритм для решения задачи о коммивояжере. - В кн.: Экономика и мате­матические методы, 1965, т. 1, № 1, с. 94-107.

ПРЕДИСЛОВИЕ............................................................................................................................................................................................................ 2

ВВЕДЕНИЕ.................................................................................................................................................................................................................... 3

ГЛАВА 1. ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ.......................................................................................................................................... 8

1.1. ПОСТАНОВКА ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ............................................................................................. 9

1.2. ОСНОВНЫЕ СВОЙСТВА ЗЛП И ЕЕ ПЕРВАЯ ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ........................................................... 11

1.3. БАЗИСНЫЕ РЕШЕНИЯ И ВТОРАЯ ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ ЗЛП..................................................................... 15

1.4. СИМПЛЕКС-МЕТОД........................................................................................................................................................................................ 17

1.5. МОДИФИЦИРОВАННЫЙ СИМПЛЕКС-МЕТОД..................................................................................................................................... 26

1.6. ТЕОРИЯ ДВОЙСТВЕННОСТИ В ЛИНЕЙНОМ ПРОГРАММИРОВАНИИ....................................................................................... 30

1.7. ДВОЙСТВЕННЫЙ СИМПЛЕКС-МЕТОД................................................................................................................................................... 37

КЛЮЧЕВЫЕ ПОНЯТИЯ.......................................................................................................................................................................................... 42

КОНТРОЛЬНЫЕ ВОПРОСЫ................................................................................................................................................................................... 43

ГЛАВА 2. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ................................................................................................................................. 44

2.1. МЕТОДЫ РЕШЕНИЯ ЗАДАЧ НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ...................................................................................... 44

2.2. ДВОЙСТВЕННОСТЬ В НЕЛИНЕЙНОМ ПРОГРАММИРОВАНИИ................................................................................................... 55

КЛЮЧЕВЫЕ ПОНЯТИЯ.......................................................................................................................................................................................... 59

КОНТРОЛЬНЫЕ ВОПРОСЫ................................................................................................................................................................................... 59

ГЛАВА 3. ТРАНСПОРТНЫЕ И СЕТЕВЫЕ ЗАДАЧИ................................................................................................................................ 60

3.1. ТРАНСПОРТНАЯ ЗАДАЧА И МЕТОДЫ ЕЕ РЕШЕНИЯ........................................................................................................................ 60

3.2. СЕТЕВЫЕ ЗАДАЧИ........................................................................................................................................................................................... 66

КЛЮЧЕВЫЕ ПОНЯТИЯ.......................................................................................................................................................................................... 73

КОНТРОЛЬНЫЕ ВОПРОСЫ................................................................................................................................................................................... 73

ГЛАВА 4. ДИСКРЕТНОЕ ПРОГРАММИРОВАНИЕ................................................................................................................................... 74

4.1. ТИПЫ ЗАДАЧ ДИСКРЕТНОГО ПРОГРАММИРОВАНИЯ..................................................................................................................... 74

4.2. МЕТОД ГОМОРИ............................................................................................................................................................................................... 78

4.3. МЕТОД ВЕТВЕЙ И ГРАНИЦ.......................................................................................................................................................................... 81

КЛЮЧЕВЫЕ ПОНЯТИЯ.......................................................................................................................................................................................... 86

КОНТРОЛЬНЫЕ ВОПРОСЫ................................................................................................................................................................................... 86

ГЛАВА 5. ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ........................................................................................................................... 86

5.1. ОБЩАЯ СХЕМА МЕТОДОВ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ................................................................................. 86

5.2. ПРИМЕРЫ ЗАДАЧ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ.................................................................................................... 93

КЛЮЧЕВЫЕ ПОНЯТИЯ........................................................................................................................................................................................ 101

КОНТРОЛЬНЫЕ ВОПРОСЫ................................................................................................................................................................................ 101

ГЛАВА 6. КРАТКИЙ ОБЗОР ДРУГИХ РАЗДЕЛОВ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ................................................................. 101

6.1. ТЕОРИЯ ИГР...................................................................................................................................................................................................... 101

6.2. ТЕОРИЯ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ........................................................................................................................................... 108

КЛЮЧЕВЫЕ ПОНЯТИЯ........................................................................................................................................................................................ 112

КОНТРОЛЬНЫЕ ВОПРОСЫ................................................................................................................................................................................ 112

СПИСОК ЛИТЕРАТУРЫ........................................................................................................................................................................................ 112

Оптимальные САУ – это системы в которых управление осуществляется таким образом что требуемый критерий оптимальности имеет экстремальное значение. Граничные условия определяющие начальное и требуемое конечное состояния системы технологическая цель системы. tн Её ставят в тех случаях когда особый интерес представляет среднее отклонение в течение определённого интервала времени и задача системы управления – обеспечить минимум этого интеграла...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Оптимальное управление

Воронов А.А., Титов В.К., Новогранов Б.Н. Основы теории автоматического регулирования и управления. М.: Высшая школа, 1977. – 519с. С. 477 – 491.

Оптимальные САУ – это системы, в которых управление осуществляется таким образом, что требуемый критерий оптимальности имеет экстремальное значение.

Примеры оптимального управления объектами:

  1. Управление движением ракеты с целью достижения ею заданной высоты или дальности при минимальном расходе горючего;
  2. Управление перемещением приводимого двигателем механизма, при котором минимизировались бы затраты энергии;
  3. Управление атомным реактором, при котором максимальна производительность.

Задача оптимального управления формулируется следующим образом:

“Найти такой закон изменения во времени управления u (t ), при котором система при заданных ограничениях перейдёт из одного заданного состояния в другое оптимальным образом в том смысле,что функционал I , выражающий качество процесса, получит при найденном управлении экстремальное значение “.

Чтобы решить задачу оптимального управления, необходимо знать:

1.Математическое описание объекта и среды, связывающее значения всех координат исследуемого процесса,управляющих и возмущающих воздействий;

2.Ограничения физического характера на координаты и закон управления, выраженные математически;

3. Граничные условия, определяющие начальное и требуемое конечное состояния системы

(технологическая цель системы);

4.Целевую функцию (функционал качества –

математическая цель).

Математически критерий оптимальности чаще всего представляют в виде:

t к

I =∫ f o [ y (t ), u (t ), f (t ), t ] dt + φ [ y (t к ), t к ], (1)

t н

где первое слагаемое характеризует качество управления на всём интервале (t н , t н ) и называется

интегральной составляющей, второе слагаемое

характеризует точность в конечный (терминальный) момент времени t к .

Выражение (1) называется функционалом, так как I зависит от выбора функции u (t ) и получающегося при этом y (t ).

Задача Лагранжа. В ней минимизируется функционал

t к

I=∫f o dt.

t н

Её ставят в тех случаях, когда особый интерес представляет среднее отклонение в течение

определённого интервала времени, и задача системы управления – обеспечить минимум этого интеграла (ухудшение качества продукции, убыток и т.п.).

Примеры функционалов:

I =∫ (t ) dt – критерий минимальной ошибки в установившемся режиме, где x (t ) –

  1. отклонение управляемого параметра от заданного значения;

I =∫ dt = t 2 - t 1 = > min – критерий максимального быстродействия САУ;

I =∫ dt = > min – критерий оптимальной экономичности.

Задача Майера. В этом случае минимизируемым является функционал, определяемый только терминальной частью, т.е.

I = φ =>min.

Например, для системы управления ЛА, описываемым уравнением

F o (x , u , t ),

можно поставить следующую задачу: определить управление u (t ), t н ≤ t ≤ t к так, чтобы за

заданное время полёта достичь максимальной дальности при условии, что в конечный момент времени t к ЛА совершит посадку, т.е. x (t к ) =0.

Задача Больца сводится к задаче минимизации критерия (1).

Базовыми методами решения задач оптимального управления являются:

1.Классическое вариационное исчисление – теорема и уравнение Эйлера;

2.Принцип максимума Л.С. Понтрягина;

3.Динамическое программирование Р. Беллмана.

УРАВНЕНИЕ И ТЕОРЕМА ЭЙЛЕРА

Пусть задан функционал:

t к

I =∫ f o dt ,

t н

где – некоторые дважды дифференцируемые функции, среди которых необходимо найти такие функции (t ) или экстремали , которые удовлетворяют заданным граничным условиям x i (t н ), x i (t к ) и минимизируют функционал.

Экстремали отыскиваются среди решений уравнения Эйлера

I = .

Для установления факта минимизации функционала необходимо удостовериться, что вдоль экстремалей выполняются условия Лагранжа:

аналогичные требованиям положительности второй производной в точке минимума функции.

Теорема Эйлера: “Если экстремум функционала I существует и достигается среди гладких кривых, то он может достигаться только на экстремалях”.

ПРИНЦИП МАКСИМУМА Л.С.ПОНТРЯГИНА

Школа Л.С.Понтрягина сформулировала теорему о необходимом условии оптимальности, сущность которой в следующем.

Допустим, что дифференциальное уравнение объекта вместе с неизменяемой частью управляющего устройства заданы в общей форме:

На управление u j могут накладываться ограничения, например, в виде неравенств:

, .

Цель управления состоит в переводе объекта из начального состояния (t н ) в конечное состояние (t к ). Момент окончания процесса t к может быть фиксированным или свободным.

Критерием оптимальности пусть будет минимум функционала

I = dt .

Введём вспомогательные переменные и образуем функцию

Fo ()+ f () f ()+

Принцип максимума гласит, что для оптимальности системы, т.е. для получения минимума функционала, необходимо существование таких ненулевых непрерывных функций, удовлетворяющих уравнению

Что при любом t , находящемся в заданном диапазоне t н≤ t ≤ t к , величина Н, как функция допустимого управления, достигает максимума.

Максимум функции Н определяется из условий:

если не достигает границ области, и как точная верхняя грань функции Н по в противном случае.

Динамическое программирование Р.Беллмана

Принцип оптимальности Р.Беллмана:

“ Оптимальное поведение обладает тем свойством, что, каковы бы ни были первоначальное состояние и решение в начальный момент, последующие решения должны составлять оптимальное поведение относительно состояния, получающегося в результате первого решения.”

Под “поведением” системы следует понимать движение этих систем, а термин “решение” относится к выбору закона изменения во времени управляющих сил.

В динамическом программировании процесс поиска экстремалей разбивается на n шагов, в то время как в классическом вариационном исчислении ведётся поиск экстремали целиком.

Процесс поиска экстремали базируется на следующих предпосылках принципа оптимальности Р.Беллмана:

  1. Каждый отрезок оптимальной траектории является сам по себе оптимальной траекторией;
  2. Оптимальный процесс на каждом участке не зависит от его предыстории;
  3. Оптимальное управление (оптимальная траектория) ищется с помощью попятного движения [от y (T ) к y (T -∆) , где ∆ = Т/ N , N – число участков разбиения траектории, и т.д.].

Эвристически уравнения Беллмана для требуемых постановок задач выведены применительно к непрерывным и дискретным системам.

Адаптивное управление

Андриевский Б.Р., Фрадков А.Л. Избранные главы теории автоматического управления с примерами на языке MATLAB . – СПб.: Наука, 1999. – 467с. Глава 12.

Воронов А.А., Титов В.К., Новогранов Б.Н. Основы теории автоматического регулирования и управления. М.: Высшая школа, 1977. – 519с. С. 491 – 499.

Анхимюк В.Л., Опейко О.Ф., Михеев Н.Н. Теория автоматического управления. – Мн.: Дизайн ПРО, 2000. – 352с. С. 328 – 340.

Необходимость в адаптивных системах управления возникает в связи со значительным усложнением решаемых задач управления, причем специфическая особенность такого усложнения заключается в отсутствии практической возможности для подробного изучения и описания процессов, протекающих в управляемом объекте.

Например, современные высокоскоростные летательные аппараты, точные априорные данные о характеристиках которых во всех условиях функционирования не могут быть получены из-за значительных разбросов параметров атмосферы, больших диапазонов изменения скоростей полета, дальностей и высот, а также из-за наличия широкого спектра параметрических и внешних возмущений.

Некоторые объекты управления (самолеты и ракеты, технологические процессы и энергетические установки) отличаются тем, что их статические и динамические характеристики изменяются в широких пределах непредвиденным заранее образом. Оптимальное управление такими объектами возможно с помощью систем, в которых недостающая информация автоматически пополняется самой системой в процессе работы.

Адаптивными (лат.” adaptio ” – приспособление) называются такие системы, которые при изменении параметров объектов или характеристик внешних воздействий в процессе эксплуатации самостоятельно, без участия человека изменяют параметры регулятора, его структуру, настройку или регулирующие воздействия для поддержания оптимального режима работы объекта.

Создание адаптивных систем управления осуществляется в принципиально иных условиях, т.е. адаптивные методы должны способствовать достижению высокого качества управления при отсутствии достаточной полноты априорной информации о характеристиках управляемого процесса или в условиях неопределенности.

Классификация адаптивных систем :

Самоприспосабливающиеся

(адаптивные)

Системы управления

Самонастраивающиеся Самообучающиеся Системы с адаптацией

Системы системы в особых фазовых

Состояниях

Поисковые Беспоиско- Обучающие- Обучающие- Релейные Адаптивные

(экстремаль- вые (анали- ся с поощре- ся без автоколеба- системы с

Ные) тические) нием поощрения тельные переменной

Системы системы системы структурой

Структурная схема классификации АС (по характеру процесса адаптации)

Самонастраивающиеся системы (СНС) представляют собой системы, в которых адаптация при изменении условий работы осуществляется путем изменения параметров и управляющих воздействий.

Самоорганизующимися называются системы, в которых адаптация осуществляется за счет изменения не только параметров и управляющих воздействий, но и структуры.

Самообучающаяся – это система автоматического управления, в которой оптимальный режим работы управляемого объекта определяется с помощью управляющего устройства, алгоритм которого автоматически целенаправленно совершенствуется в процессе обучения путем автоматического поиска. Поиск производится с помощью второго управляющего устройства, являющегося органической частью самообучающейся системы.

В поисковых системах изменение параметров управляющего устройства или управляющего воздействия осуществляется в результате поиска условий экстремума показателей качества. Поиск условий экстремума в системах этого типа осуществляется с помощью пробных воздействий и оценки полученных результатов.

В беспоисковых системах определение параметров управляющего устройства или управляющих воздействий производится на основе аналитического определения условий, обеспечивающих заданное качество управления без применения специальных поисковых сигналов.

Системы с адаптацией в особых фазовых состояниях используют особые режимы или свойства нелинейных систем (режимы автоколебаний, скользящие режимы) для организации контролируемых изменений динамических свойств системы управления. Специально организованные особые режимы в таких системах либо служат дополнительным источником рабочей информации об изменяющихся условиях функционирования системы, либо наделяют системы управления новыми свойствами, за счет которых динамические характеристики управляемого процесса поддерживаются в желаемых пределах независимо от характера возникающих при функционировании изменений.

При применении адаптивных систем решаются следующие основные задачи:

1 . В процессе функционирования системы управления при изменении параметров, структуры и внешних воздействий обеспечивают такое управление, при котором сохраняются заданные динамические и статические свойства системы;

2 . В процессе проектирования и наладки при начальном отсутствии полной информации о параметрах, структуре объекта управления и внешних воздействиях производят автоматическую настройку системы в соответствии с заданными динамическими и статическими свойствами.

Пример 1 . Адаптивная система стабилизации углового положения ЛА.

f 1 (t ) f 2 (t ) f 3 (t )

Д1 Д2 Д3

ВУ1 ВУ2 ВУ3 f (t ) f 1 (t ) f 2 (t ) f 3 (t )

u (t ) W 1 (p ) W 0 (p ) y (t )

+ -

Рис. 1.

Приспосабливающаяся система стабилизации ЛА

При изменении условий полета меняется передаточная функция W 0 (p ) ЛА, а, следовательно, и динамическая характеристика всей системы стабилизации:

. (1)

Возмущения со стороны внешней среды f 1 (t ), f 2 (t ), f 3 (t ) , приводящие к контролируемым изменениям параметров системы, приложены к различным точкам объекта.

Возмущающее воздействие f (t ) , приложенное непосредственно к входу объекта управления, в отличие от f 1 (t ), f 2 (t ), f 3 (t ) не меняет его параметров. Поэтому в процессе работы системы измеряют только f 1 (t ), f 2 (t ), f 3 (t ).

В соответствии с принципом обратной связи и выражением (1) неконтролируемые изменения характеристики W 0 (p ) из-за возмущений и помех вызывают сравнительно небольшие изменения параметров Ф(p ) .

Если поставить задачу более полной компенсации контролируемых изменений, чтобы передаточная функция Ф(р) системы стабилизации ЛА оставалась практически неизменной, то следует надлежащим образом изменить характеристику регулятора W 1 (p ). Это и осуществляется в приспосабливающейся САУ, выполненной по схеме рис.1. Параметры внешней среды, характеризуемые сигналами f 1 (t ), f 2 (t ), f 3 (t ), например давление скоростного напора P H (t ) , температура окружающего воздуха T 0 (t ) и скорость полёта υ(t ) , непрерывно измеряются датчиками Д 1 , Д 2 , Д 3 , и текущие значения параметров поступают в вычислительные устройства В 1, В 2 ,В 3 , вырабатывающие сигналы, с помощью которых подстраивается характеристика W 1 (p ), чтобы компенсировать изменения характеристики W 0 (p ).

Однако, в АСАУ данного типа (с разомкнутым циклом настройки) отсутствует самоанализ эффективности осуществляемых ею контролируемых изменений.

Пример 2. Экстремальная система управления скоростью полета ЛА.

Z Возмущающее

Воздействие

X 3 = X 0 - X 2

Устройство авто- X 0 Усилительно- X 4 Исполнительное X 5 Регулируемый X 1

Матического по- преобразователь- устройство объект

Иска экстремума + - ное устройство

Измерительное

Устройство

Рис.2.Функциональная схема экстремальной системы управления скоростью полета ЛА

Экстремальная система определяет наивыгоднейшую программу, т.е. то значение X 1 (требуемая скорость движения ЛА), которое нужно в данный момент выдерживать, чтобы производился минимум расхода горючего на единицу длины пути.

Z - характеристика объекта; X 0 - управляющее воздействие на систему.

(величина расхода горючего)

y(0)

y(T)

Самоорганизующиеся системы

В этих нормах отдельно нормируется каждый компонент микроклимата в рабочей зоне производственного помещения: температура относительная влажность скорость движения воздуха в зависимости от способности организма человека к акклиматизации в разное время года характера одежды интенсивности производимой работы и характера тепловыделений в рабочем помещении. Перепады температуры воздуха по высоте и по горизонтали а также изменения температуры воздуха в течение смены при обеспечении оптимальных величин микроклимата на рабочих местах не должны... Управление: понятие признаки система и принципы Органы государственного управления: понятие виды и функции. По содержанию административное право является государственно-управленческим правом реализующим правовой интерес большинства граждан для чего субъекты управления наделяются юридически властными полномочиями представительскими функциями государства. Следовательно объектом действия юридических норм являются специфические управленческие общественные отношения возникающие между субъектом управления управляющим и объектами... Государственное регулирование социально-экономического развития регионов. Местные бюджеты как финансовая основа социально-экономического развития региона. Разные территории Украины имеют свои особенности и отличия как относительно экономического развития так и в социальном историческом языковом и ментальном аспектах. Из таких проблем нужно прежде всего назвать несовершенство отраслевой структуры большинства региональных хозяйственных комплексов их низкую экономическую эффективность; значительные отличия между регионами в уровнях...

Задачи оптимального управления относятся к теории экстремальных задач, то есть задач определения максимальных и минимальных значений. Уже то обстоятельство, что в этой фразе встретилось несколько латинских слов (maximum - наибольшее, minimum - наименьшее, extremum - крайнее, optimus - оптимальное), указывает, что теория экстремальных задач была предметом исследования с древних времен. О некоторых таких задачах писали еще Аристотель (384-322 годы до н.э.), Евклид (III в. до н.э.) и Архимед (287-212 годы до н.э.). Основание города Карфагена (825 год до н.э.) легенда ассоциирует с древнейшей задачей определения замкнутой плоской кривой, охватывающей фигуру максимально возможной площади. Подобные задачи именуются изопериметрическими.

Характерной особенностью экстремальных задач является то, что их постановка была порождена актуальными запросами развития общества. Более того, начиная с XVII века доминирующим становится представление о том, что законы окружающего нас мира являются следствием некоторых вариационных принципов. Первым из них был принцип П. Ферма (1660 год), в соответствии с которым траектория света, распространяющегося от одной точки к другой, должна быть такова, чтобы время прохождения света вдоль этой траектории было минимально возможным. Впоследствии были предложены раз- личные широко используемые в естествознании вариационные принципы, например: принцип стационарного действия У.Р. Гамильтона (1834 год), принцип виртуальных перемещений, принцип наименьшего принуждения и др. Параллельно развивались и методы решения экстремальных задач. Около 1630 года Ферма сформулировал метод исследования на экстремум для полиномов, состоящий в том, что в точке экстремума производная равняется нулю. Для общего случая этот метод получен И. Ньютоном (1671) и Г.В. Лейбницем (1684), работы которых знаменуют зарождение математического анализа. Начало развития классического вариационного исчисления датируется появлением в 1696 году статьи И. Бернулли (ученика Лейбница), в которой сформулирована постановка задачи о кривой, соединяющей две точки А и В, двигаясь по которой из точки А в В под действием силы тяжести материальная точка достигнет В за минимально возможное время.

В рамках классического вариационного исчисления в XVIII-XIX веках установлены необходимые условие экстремума первого порядка (Л. Эйлер, Ж.Л. Лагранж), позднее развиты необходимые и достаточные условия второго порядка (К.Т.В. Вейерштрасс, А.М. Лежандр, К.Г.Я. Якоби), построены теория Гамильтона-Якоби и теория поля (Д. Гиль- берт, А. Кнезер). Дальнейшее развитие теории экстремальных задач привело в XX веке к созданию линейного программирования, выпуклого анализа, математического программирования, теории минимакса и некоторых иных разделов, одним из которых является теория оптимального управления.

Эта теория подобно другим направлениям теории экстремальных задач, возникла в связи с актуальными задачами автоматического регулирования в конце 40-х годов (управление лифтом в шахте с целью наискорейшей остановки его, управление движением ракет, стабилизация мощности гидроэлектростанций и др.). Заметим, что постановки отдельных задач, которые могут быть интерпретированы как задачи оптимального управления, встречались и ранее, например в “Математических началах натуральной философии” И. Ньютона (1687). Сюда же относятся и задача Р. Годдарда (1919) о подъеме ракеты на заданную высоту с минимальными затратами топлива и двойственная ей задача о подъеме ракеты на максимальную высоту при заданном количестве топлива. За прошедшее время были установлены фундаментальные принципы теории оптимального управления: принцип максимума и метод динамического программирования.

Указанные принципы представляют собой развитие классического вариационного исчисления для исследования задач, содержащих сложные ограничения на управление.

Сейчас теория оптимального управления переживает период бурного развития как в связи с наличием трудных и интересных математических проблем, так и в связи с обилием приложений, в том числе и в таких областях, как экономика, биология, медицина, ядерная энергетика и др.

Все задачи оптимального управления можно рассматривать как задачи математического программирования и в таком виде решать их численными методами.

При оптимальном управлении иерархическими многоуровневыми системами, например, крупными химическими производствами, металлургическими и энергетическими комплексами, применяются многоцелевые и многоуровневые иерархические системы оптимального управления. В математическую модель вводятся критерии качества управления для каждого уровня управления и для всей системы в целом, а также координация действий между уровнями управления.

Если управляемый объект или процесс является детерминированным, то для его описания используются дифференциальные уравнения. Наиболее часто используются обыкновенные дифференциальные уравнения вида. В более сложных математических моделях (для систем с распределёнными параметрами) для описания объекта используются дифференциальные уравнения в частных производных. Если управляемый объект является стохастическим, то для его описания используются стохастические дифференциальные уравнения.

Если решение поставленной задачи оптимального управления не является непрерывно зависящим от исходных данных (некорректная задача), то такая задача решается специальными численными методами.

Система оптимального управления, способная накапливать опыт и улучшать на этой основе свою работу, называется обучающейся системой оптимального управления.

Реальное поведение объекта или системы всегда отличается от программного вследствие неточности в начальных условиях, неполной информации о внешних возмущениях, действующих на объект, неточности реализации программного управления и т.д. Поэтому для минимизации отклонения поведения объекта от оптимального обычно используется система автоматического регулирования.

Иногда (например, при управлении сложными объектами, такими как доменная печь в металлургии или при анализе экономической информации) в исходных данных и знаниях об управляемом объекте при постановке задачи оптимального управления содержится неопределённая или нечёткая информация, которая не может быть обработана традиционными количественными методами. В таких случаях можно использовать алгоритмы оптимального управления на основе математической теории нечётких множеств (Нечёткое управление). Используемые понятия и знания преобразуются в нечёткую форму, определяются нечёткие правила вывода принимаемых решений, затем производится обратное преобразование нечётких принятых решений в физические управляющие переменные.

Любая автоматическая система предназначена для управления каким-либо объектом, должна быть построена таким образом, чтобы осуществляемое ею управление было оптимальным, т.е наилучшем в том или ином смысле. Задачи оптимального управления чаще всего возникают в подсистемах управления технологическими процессами. В каждом случае существует некоторая технологическая задача, для выполнения которой предназначается соответствующая машина или установка (объект управления), снабженная соответствующая системой управления, т.е. речь идет о некоторой САУ, состоящей из объекта управления и совокупности устройств, которые обеспечивают управление этим объектом. Как правило эта совокупность включает в себя измерительные, усилительные преобразовательные и исполнительные устройства. Если объединить усилительные, преобразовательные и исполнительные устройства в одно звено, называемое управляющим устройством или регулятором, то функциональная схема САУ может быть приведена к виду на рис. 1. 1.

Рис. 1. 2 Функциональная схема оптимальной системы

На вход управляющего устройства поступает задающее воздействие, которое содержит инструкцию о том, каково должно быть состояние объекта - так называемое «желаемое состояние».

На объект управления может поступать возмущающие воздействие z, представляющие нагрузку или помеху. Измерение координат объекта измерительным устройством может производиться с некоторыми случайными погрешностями x (ошибка) .

Таким образом, задачей управляющего устройства является выработка такого управляющего воздействия, чтобы качество функционирования САУ в целом было бы наилучшим в некотором смысле. Для определения алгоритма управляющего устройства необходимо знать характеристики объекта и характер информации об объекте и возмущениях, которая поступает в управляющее устройство.

Под характеристиками объекта понимают зависимость выходных величин объекта от входных

где F, в общем случае,-- оператор, который устанавливает закон соответствия между двумя множествами функций. Оператор F объекта может быть задан различными способами: с помощью формул, таблиц, графиков. Его задают и в виде системы дифференциальных уравнений, которая в векторной форме записывается так

где и задавалось начальное и конечное значения вектора.

Существует много различных путей решения рассматриваемой задачи. Но только один способ управления объектом дает наилучший в некотором смысле результат. Этот способ управления и реализующую его систему называют оптимальными.

Чтобы иметь количественные основания для предпочтения одного способа управления всем другим, необходимо определить цель управления, а затем ввести меру, характеризующую эффективность достижения цели -критерий оптимальности управления. Обычно критерий оптимальности - это числовая величина, зависящая от изменяющихся во времени и пространстве координат и параметров системы так, что каждому закону управления соответствует определенное значение критерия. В качестве критерия оптимальности могут быть выбраны различные технические и экономические показатели рассматриваемого процесса.

Иногда к системе управления предъявляются различные, подчас противоречивые требования. Законы управления, которые одновременно наилучшим образом удовлетворяли бы каждому требованию, не существует. Поэтому из всех требований нужно выбрать одно главное, которое должно удовлетворяться наилучшим образом. Другие требования играют роль ограничений. Следовательно, выбор критерия оптимальности должен производиться, только на основании изучения технологии и экономики рассматриваемого объекта и среды. Эта задача выходит за рамки теории ОУ.

При решении задач оптимального управления наиболее важным является задание цели управления, что математически можно рассматривать как задачу достижения экстремума некоторой величины Q -- критерия оптимальности. В математике такую величину называют функционалом. В зависимости от решаемой задачи необходимо достижение минимума либо максимума Q. Например, запишем критерий оптимальности, в котором Q должно быть минимально

Как видно, величина Q зависит от функций.

В качестве критерия оптимальности могут быть приняты различные технические и технико-экономические показатели и оценки. Выбор критерия оптимальности -- это инженерная и инженерно-экономическая задача, которая решается на основе глубокого и всестороннего изучения управляемого процесса. В теории управления широко распространены интегральные функционалы, характеризующие качество функционирования системы. Достижение максимального или минимального значения этого функционала указывает на оптимальное поведение или состояние системы. Интегральные функционалы обычно отражают условия работы объектов управления и учитывают ограничения (по нагреву, прочности, мощности источников энергии и т. д.), накладываемые на координаты .

Для процессов управления использоваться такие критерии:

1. оптимальное быстродействие (время переходного процесса)

2. минимум среднеквадратичного значения ошибки.

3. минимум расхода затрачиваемой энергии.

Таким образом, критерий оптимальности может относиться к переходному или к установившемуся процессу в системе.

В зависимости от критерия оптимальности оптимальные системы можно разделить на два основных класса -- оптимальные по быстродействию и оптимальные по точности.

Системы оптимального управления в зависимости от характера критерия оптимальности можно разделить на три типа:

а) равномерно-оптимальные системы;

б) статистически-оптимальные системы;

в) минимаксно-оптимальные системы.

Равномерно-оптимальная -- это такая система, у которой каждый отдельный процесс является оптимальным. Например, в оптимальных по быстродействию системах при любых начальных условиях и любых возмущениях система приходит наикратчайшим во времени путем к требуемому состоянию.

В статистически-оптимальных системах критерий оптимальности имеет статистический характер. Такие системы должны быть наилучшими в среднем. Здесь не требуется или невозможна оптимизация в каждом отдельном процессе. В качестве статистического критерия чаще всего фигурирует среднее значение какого-либо первичного критерия, например математическое ожидание выхода некоторой величины за определенные пределы.

Минимаксно-оптимальные -- это такие системы, которые в наихудшем случае дают возможно наилучший результат. Они отличаются от равномерно-оптимальных тем, что в ненаихудшем случае могут дать худший результат, чем какая-либо другая система .

Оптимальные системы можно также подразделить на три типа в зависимости от способа получения информация об управляемом объекте:

оптимальные системы с полной информацией об объекте;

оптимальные системы с неполной информацией об объекте и пассивным ее накоплением;

оптимальные системы с неполной информацией об объекте и активным ее накоплением в процессе управления (системы дуального управления).

Существует две разновидности задач синтеза оптимальных систем:

Определение оптимальных значений параметров регулятора при заданных параметрах объекта и заданной структуре системы;

Синтез структуры и определение параметров регулятора при заданных параметрах и структуре объекта управления.

Решение задач первого типа возможно различными аналитическими методами при минимизации интегральных оценок, а также с помощью вычислительной техники (моделирование на ЭВМ), рассматривая заданный критерий оптимальности.

Решение задач второго типа основано на использовании специальных методов: методы классического вариационного исчисления, принципа максимума Понтрягина и динамического программирования Беллмана, а также методы математического программирования. Для синтеза оптимальных систем при случайных сигналах используются методы Винера, вариационные и частотные методы. При разработке адаптивных систем наиболее широкое применение имеют градиентные методы, позволяющие определить законы, изменения настраиваемых параметров.

Под оптимальной САУ понимается наилучшая в некотором смысле система. Критерии оптимальности могут быть различны и зависят от решаемой задачи. Наиболее часто встречаются такие критерии оптимальности:

1) Точность САУ при изменяющемся воздействии,

2) Время переходного процесса,

3) Экономичность;

    Производительность;

    Интегральные критерии.

К настоящему времени наибольшее развитие получили 2 направления в теории оптимальности систем:

1) Теория оптимального управления движением систем с полной информацией об объекте и возмущениях;

    Теории оптимального управления при случайных возмущениях.

Для реализации оптимального управления необходимо:

    Определить цель управления. Цель выражается либо целевой функцией, либо критерием оптимизации.

Целевая функция или критерий оптимизации позволяют найти количественный эффект любого решения.

    Выбрать модель для анализа и определения эффективности принятого решения.

    Изучить все состояния среды функционирования объекта, влияющие на прошлое, настоящее и будущее процесса управления.

При решении задачи оптимального управления используются методы вариационного исчисления, принципы максимума, а также динамическое и математическое программирование.

Задачу оптимального управления в общем случае можно сформировать следующим образом:

1)Цель управления, представленная математически в виде некоторого функционалаили критерия управления

2)Уравнения системы - они обычно задаются в виде уравнений состояний

3)Система граничных уравнений в начальный и конечный момент времени.

4)Система ограни­чений, которым должны удовлетворять переменные состояния и уравнения.

Требуется найти:

Вектор управления, при котором критерий цели управления имеет экстремум (max или min).

Необходимо отметить, что оптимальное управление в ряде случаев может не существовать, и об этом нельзя судить не решая задачу. Решение задачи нахождения оптимального управления является неоднозначным, т.е. каждое найденное решение дает локальный оптимум. Если найдены все локальные оптимумы, то в этом случае может быть выделен глобальный оптимум. Найденный глобальный оптимум является решением задачи оптимального управления.

Интегральные критерии качества:

    Оптимальное Быстродействие

Функционал имеет вид

    Оптимальная Производительность

Критерием оптимальности явл-ся угол поворота  за определенное время t и функционал имеет вид

    Оптимальная экономичность

Критерием оптимальности явл-ся расход энергии за определенное время и функционал имеет вид

28. Аналитическое конструирование регуляторов. Постановка задачи.

При исследовании качества переходных в линейных САУ вводились разлитые интегральные критерии качества, с помощью которых оценивался переходной процесс на бесконечном интервале времени. При рассмотрении интегральных критериев качества мы убедились в том, что эти критерии позволяют определить параметры регулятора, если задана его структура. Можно поставить более общую задачу: найти закон регулирования - аналитическую функцию, связывающую управляющую координату и управляющее воздействие при этом доставляющее min интегральному критерию качества. Такое оптимальное конструирование дифференциального уравнения регулятора получило название аналитического конструирования регуляторов. По методам решения и постановке задачи эта задача сродни задачам оптимального регулирования.

Это вариационная задача, где в качестве экстремали ищется функция связывающая Х и U.

При аналитическом конструировании задача состоит в том, что бы найти закон регулирования который с учетом уравнений объекта и граничных условий доставлял бы min интегралу, характеризующему квадратичную ошибку системы и гарантирующему ее устойчивость.

Постановка задачи оптимального конструирования регуляторов.

Объект регулирования задан с помощью дифуравнений, что в операторной форме соответствует заданию передаточной функции Wор(S) (или W(S))

Считают что на систему не действуют внешние возмущения, а переходной процесс происходит при изменении начальных условий.

X = y 0 – y - рассогласование

Вустойчивой линейной САУ в результате переходного процесса все функции координат должны стремиться к 0. х 1 () = х 2 () = … х n () = U() = 0 (2)

В качестве критерия оптимальности выберем интеграл вида

(3), где V- положительно определённая квадратичная форма.

Т.е. если подставитьV в  (3) то это будет квадратичная ошибка системы.

Член U 2 в (4) характеризует стоимость процесса управления, т.е. затраты энергии на нагрев. U 2 гарантирует отсутствие нереализуемых в линейных регуляторах законов, он гарантирует отсутствие управляющих воздействий, при которых скорость превращается в бесконечность.

Само существование (3) гарантирует устойчивость системы. При аналитическом конструирование задание состоит в том чтобы найти в аналитической форме функцию Ф(U,U,x 1 …x k) = 0 (5) – который с учётом уравнений объекта и приграничных условий (1) и (2) доставлял бы минимум интегралу (3).