Показатели эффективности функционирования смо. На практическом занятии рассмотрим этот путь и сравним результаты моделирования с теоретическим решением Показатели эффективности систем массового обслуживания

Во всех рассмотренных выше СМО предполагалось, что все запросы, поступающие в систему - однородные, то есть, они имеют один и тот же закон распределения времени обслуживания и обслуживаются в системе согласно общей дисциплины выбора из очереди. Однако, во многих реальных системах запросы, поступающие в систему, неоднородны как по распределению времени обслуживания, так и по их ценности для системы и, следовательно, праву претендовать на первоочередное обслуживание в момент освобождения прибора. Такие модели исследуются в рамках теории приоритетных СМО. Эта теория довольно хорошо развита и ее изложению посвящено немало монографий (см., например, , , , и т.д.). Здесь мы ограничимся кратким описанием приоритетных систем и рассмотрим одну систему.

Рассмотрим однолинейную СМО с ожиданием. На вход системы поступают независимых простейших потоков, поток имеет интенсивность . Будем обозначать

Времена обслуживания запросов из потока характеризуются функцией распределения с преобразованием Лапласа - Стилтьеса и конечными начальными моментами

Запросы из потока назовем запросами приоритета к.

Считаем, что запросы из потока более приоритетны, чем запросы из потока, если Приоритетность проявляется в том, что в момент окончания обслуживания следующим на обслуживание выбирается из очереди запрос, имеющий максимальный приоритет. Запросы, имеющие один и тот же приоритет, выбираются согласно установленной дисциплине обслуживания, например, согласно дисциплине FIFO.

Рассматриваются различные варианты поведения системы в ситуации, когда во время обслуживания запроса некоторого приоритета в систему поступает запрос более высокого приоритета.

Система называется СМО с относительным приоритетом, если поступление такого запроса не прерывает обслуживание запроса. Если же такое прерывание происходит, то система называется СМО с абсолютным приоритетом. В этом случае, однако, требуется уточнить дальнейшее поведение запроса, обслуживание которого оказалось прерванным. Различают следующие варианты: прерванный запрос уходит из системы и теряется; прерванный запрос возвращается в очередь и продолжает обслуживание с места прерывания после ухода из системы всех запросов, имеющих более высокий приоритет; прерванный запрос возвращается в очередь и начинает обслуживание заново после ухода из системы всех запросов, имеющих более высокий приоритет. Прерванный запрос обслуживается прибором после ухода из системы всех запросов, имеющих более высокий приоритет, в течение времени, имеющего прежнее или некоторое другое распределение. Возможен вариант, когда требуемое время обслуживания в последующих попытках идентично времени, которое требовалось для полного обслуживания данного запроса в первой попытке.

Таким образом, имеется достаточно большое число вариантов поведения системы с приоритетом, с которыми можно ознакомиться в вышеупомянутых книгах. Общим в анализе всех систем с приоритетами является использование понятия периода занятости системы запросами приоритета к и выше. При этом основным методом исследования этих систем является метод введения дополнительного события, кратко описанный в разделе 6.

Проиллюстрируем особенности нахождения характеристик систем с приоритетами на примере системы, описанной в начале раздела. Будем считать, что это система с относительным приоритетом и найдем стационарное распределения времени ожидания запроса приоритета если бы он поступил в систему в момент времени t (так называемого виртуального времени ожидания), для системы с относительными приоритетами.

Обозначим

Условием существования этих пределов является выполнение неравенства

где величина вычисляется по формуле:

Обозначим также .

Утверждение 21. Преобразование Лапласа - Стилтьеса стационарного распределения виртуального времени ожидания запроса приоритета к определяется следующим образом:

где функции задаются формулой:

а функции находятся как решения функциональных уравнений:

Доказательство. Заметим, что функция представляет собой преобразование Лапласа - Стилтьеса распределения длины периода занятости системы запросами приоритета I и выше (то есть, интервала времени с момента поступления в пустую систему запроса приоритета I и выше и до первого после этого момента, когда система окажется свободной от присутствия запросов приоритета I и выше). Доказательство того, что функция удовлетворяет уравнению (1.118), почти дословно повторяет доказательство Утверждения 13. Отметим лишь, что величина есть вероятность того, что период занятости системы запросами приоритета I и выше начинается с прихода запроса приоритета а величина трактуется как вероятность ненаступления катастрофы и запросов приоритета I и выше, за периоды занятости, порожденные которыми наступает катастрофа, за время обслуживания запроса приоритета , начавшего данный период занятости.

Сначала вместо процесса рассмотрим существенно более простой вспомогательный процесс - время, в течение которого ожидал бы начала обслуживания запрос приоритета к, если бы он поступил в систему в момент времени t и после этого в систему не поступало запросов более высокого приоритета.

Пусть - преобразование Лапласа - Стилтьеса распределения случайной величины . Покажем, что функция определяется следующим образом:

(1.119)

Вероятность того, что система пуста в момент времени - вероятность того, что в интервале началось обслуживание запроса приоритета

Для доказательства (1.119) применим метод введения дополнительного события. Пусть независимо от работы системы поступает простейший поток катастроф интенсивности s. Каждый запрос назовем «плохим», если во время его обслуживания поступает катастрофа, и «хорошим» - в противном случае. Как следует из утверждений 5 и 6, поток плохих запросов приоритета к и выше является простейшим с интенсивностью

Введем событие A(s,t) - за время t в систему не поступали плохие запросы приоритета к и выше. В силу утверждения 1 вероятность этого события подсчитывается как:

Подсчитаем эту вероятность иначе. Событие A(s,t) является объединением трех несовместных событий

Событие состоит в том, что катастрофы не поступили ни за время t, ни за время При этом, естественно, за время t в систему поступали только хорошие запросы приоритета к и выше. Вероятность события очевидно, равна

Событие состоит в том, что катастрофа поступила в интервале , но в момент поступления система была пуста, а за время не поступило плохих запросов приоритета к и выше.

Вероятность события вычисляется как:

Событие состоит в том, что катастрофа поступила в интервале но в момент ее поступления в системе обслуживался запрос приоритета ниже k, который начал обслуживаться в интервале а за время t - и не поступило плохих запросов приоритета k и выше. Вероятность события определяется следующим образом:

Поскольку событие есть сумма трех несовместных событий, то его вероятность есть сумма вероятностей этих событий. Поэтому

Приравнивая два полученных выражения для вероятности и умножая обе части равенства на после несложных преобразований получаем (1.119)

Очевидно, что для того, чтобы за время ожидания запроса, поступившего в момент t не поступило катастрофы, необходимо и достаточно, чтобы за время не поступило катастроф и запросов приоритета и выше, таких, что за периоды занятости (запросами приоритета и выше), порожденные ими, наступает катастрофа. Из этих рассуждениий и вероятностной трактовки преобразования Лапласа - Стилтьеса получаем формулу, дающую связь преобразований в очевидной форме.

1.1. Структура и параметры эффективности и качества функционирования СМО

Многие экономические задачи связаны с системами массового обслуживания, т.е. такими системами, в которых, с одной стороны, возникают массовые запросы (требования) на выполнение каких-либо услуг, с другой – происходит удовлетворение этих запросов. СМО включает в себя следующие элементы: источник требований, входящий поток требований, очередь, обслуживающие устройства (каналы обслуживания), выходящий поток требований. Исследованием таких систем занимается теория массового обслуживания.

Средства, обслуживающие требования, называются обслуживающими устройствами или каналами обслуживания. Например, к ним относятся заправочные устройства на АЗС, каналы телефонной связи, посадочные полосы, мастера-ремонтники, билетные кассиры, погрузочно-разгрузочные точки на базах и складах.

Методами теории массового обслуживания могут быть решены многие задачи исследования процессов, происходящих в экономике. Так, в организации торговли эти методы позволяют определить оптимальное количество торговых точек данного профиля, численность продавцов, частоту завоза товаров и другие параметры. Другим характерным примером систем массового обслуживания могут служить заправочные станции, и задачи теории массового обслуживания в данном случае сводятся к тому, чтобы установить оптимальное соотношение между числом поступающих на заправочную станцию требований на обслуживание и числом обслуживающих устройств, при котором суммарные расходы на обслуживания и убытки от простоя были бы минимальными. Теория массового обслуживания может найти применение и при расчете площади складских помещений, при этом складская площадь рассматривается как обслуживающее устройство, а прибытие транспортных средств под выгрузку – как требование. Модели теории массового обслуживания применяются также при решении ряда задач организации и нормирования труда, других социально-экономических проблем.

Каждая СМО включает в свою структуру некоторое число обслуживающих устройств, называемых каналами обслуживания (к их числу можно отнести лиц, выполняющих те или иные операции, - кассиров, операторов, менеджеров, и т.п.), обслуживающих некоторый поток заявок (требований), поступающих на ее вход в случайные моменты времени. Обслуживание заявок происходит за неизвестное, обычно случайное время и зависит от множества самых разнообразных факторов. После обслуживания заявки канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времени их обслуживания приводит к неравномерности загрузки СМО - перегрузке с образованием очередей заявок или недогрузке - с простаиванием ее каналов. Случайность характера потока заявок и длительности их обслуживания порождает в СМО случайный процесс, для изучения которого необходимы построение и анализ его математической модели. Изучение функционирования СМО упрощается, если случайный процесс является марковским (процессом без последействия, или без памяти), когда работа СМО легко описывается с помощью конечных систем обыкновенных линейных дифференциальных уравнений первого порядка, а в предельном режиме (при достаточно длительном функционировании СМО) посредством конечных систем линейных алгебраических уравнений. В итоге показатели эффективности функционирования СМО выражаются через параметры СМО, потока заявок и дисциплины.

Из теории известно, чтобы случайный процесс являлся Марковским, необходимо и достаточно, чтобы все потоки событий (потоки заявок, потоки обслуживаний заявок и др.), под воздействием которых происходят переходы системы из состояния в состояние, являлись пуассоновским, т.е. обладали свойствами последствия (для любых двух непересекающихся промежутков времени число событий, наступающих за один из них, не зависит от числа событий, наступающих за другой) и ординарности (вероятность наступления за элементарным, или малый, промежуток времени более одного события пренебрежимо мала по сравнению с вероятностью наступления за этот промежуток времени одного события). Для простейшего пуассоновского потока случайная величина Т (промежуток времени между двумя соседними событиями) распределена по показательному закону, представляя собой плотность ее распределения или дифференциальную функцию распределения.

Если же в СМО характер потоков отличен от пуассоновского, то ее характеристики эффективности можно определить приближенно с помощью Марковской теории массового обслуживания, причем тем точнее, чем сложнее СМО, чем больше в ней каналов обслуживания. В большинстве случаев для обоснованных рекомендаций по практическому управлению СМО совсем не требует знаний точных ее характеристик, вполне достаточно иметь их приближенные значения.

Каждая СМО в зависимости от своих параметров обладает определенной эффективностью функционирования.

Эффективность функционирования СМО характеризуют три основные группы показателей:

1. Эффективность использования СМО – абсолютная или относительная пропускные способности, средняя продолжительность периода занятости СМО, коэффициент использования СМО, коэффициент не использования СМО;

2. Качество обслуживания заявок- среднее время (среднее число заявок, закон распределения) ожидания заявки в очереди или пребывания заявки в СМО; вероятность того, что поступившая заявка немедленно примется к исполнению;

3. Эффективность функционирования пары CМО потребитель, причем под потребителем понимается как совокупность заявок или их некоторый источник (например, средний доход, приносимый СМО за единицу времени эксплуатации, и др).

1.2 Классификация СМО и их основные элементы

СМО классифицируются на разные группы в зависимости от состава и от времени пребывания в очереди до начала обслуживания, и от дисциплины обслуживания требований.

По составу СМО бывают одноканальные (с одним обслуживающим устройством) и многоканальные (с большим числом обслуживающих устройств). Многоканальные системы могут состоять из обслуживающих устройств как одинаковой, так и разной производительности.

По времени пребывания требований в очереди до начала обслуживания системы делятся на три группы:

1) с неограниченным временем ожидания (с ожиданием),

2) с отказами;

3) смешанного типа.

В СМО с неограниченным временем ожидания очередное требование, застав все устройства занятыми, становится в очередь и ожидает обслуживания до тех пор, пока одно из устройств не освободится.

В системах с отказами поступившее требование, застав все устройства занятыми, покидает систему. Классическим примером системы с отказами может служить работа автоматической телефонной станции.

В системах смешанного типа поступившее требование, застав все (устройства занятыми, становятся в очередь и ожидают обслуживания в течение ограниченного времени. Не дождавшись обслуживания в установленное время, требование покидает систему.

Кратко рассмотрим особенности функционирования некоторых из этих ситем.

1. СМО с ожиданием характеризуется тем, что в системе из n (n>=1) любая заявка, поступившая в СМО в момент, когда все каналы заняты, становится в очередь и ожидает своего обслуживания, причем любая пришедшая заявка обслужена. Такая система может находится в одном из бесконечного множества состояний: s n +к (r=1.2…) –все каналы заняты и в очереди находится r заявок.

2. СМО с ожиданием и ограничением на длину очереди отличается от вышеприведенной тем, что эта система может находиться в одном из n+m+1 состояний. В состояниях s 0 ,s 1 ,…, s n очереди не существует, так как заявок в системе или нет или нет вообще и каналы свободны (s 0), или в системе есть несколько I (I=1,n) заявок, которого обслуживает соответствующее (n+1, n+2,…n+r,…,n+m) число заявок и (1,2,…r,…,m) заявок, стоящих в очереди. Заявка, пришедшая на вход СМО в момент времени, когда в очереди стоят уже m заявок, получает отказ и покидает систему необслуженной.

Т.о, многоканальная СМО работает по сути как одноканальная, когда все n каналов работают как один с дисциплиной взаимопомощи, называемой все как один, но с более высокой интенсивностью обслуживания. Граф состояний подобной подобной системы содержит всего два состояния: s 0 (s 1)- все n каналов свободны (заняты).

Анализ различных видов СМО с взаимопомощью типа все как один показывает, что такая взаимопомощь сокращает среднее время пребывания заявки в системе, но ухудшает ряд других таких характеристик, как вероятность отказа, пропускная способность, средние число заявок в очереди и время ожидания их выполнения. Поэтому для улучшения этих показателей используется изменение дисциплины обслуживания заявок с равномерной взаимопомощью между каналами следующим образом:

· Если заявка поступает в СМО в момент времени, когда все каналы свободны, то все n каналов приступает к ее обслуживанию;

· Если в это время приходит следующая заявка, то часть каналов переключается на ее обслуживание

· Если во время обслуживания этих двух заявок поступает третья заявка, то часть каналов переключается на обслуживание этой третьей заявки, до тех пор, пока каждая заявка, находящаяся в СМО, не окажется под обслуживанием только одного канала. При этом заявка, поступившая в момент занятости всех каналов, в СМО с отказами и равномерной взаимопомощью между каналами, может получить отказ и вынуждена будет покинуть систему необслуженной.

Методы и модели, применяющиеся в теории массового обслуживания, можно условно разделить на аналитические и имитационные.

Аналитические методы теории массового обслуживания позволяют получить характеристики системы как некоторые функции параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффективность работы СМО. Имитационные методы основаны на моделировании процессов массового обслуживания на ЭВМ и применяются, если невозможно применение аналитических моделей.

В настоящее время теоретически наиболее разработаны и удобны в практических приложениях методы решения таких задач массового обслуживания, в которых входящий поток требований является простейшим (пуассоновским).

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона, т.е. вероятность поступления за время t ровно k требований задается формулой:

Важная характеристика СМО - время обслуживания требований в системе. Время обслуживания одного требования является, как правило, случайной величиной и, следовательно, может быть описано законом распределения. Наибольшее распространение в теории и особенно в практических приложениях получил экспоненциальный закон распределения времени обслуживания. Функция распределения для этого закона имеет вид:

Т.е. вероятность того, что время обслуживания не превосходит некоторой величины t, определяется этой формулой, где µ- параметр экспоненциального обслуживания требований в системе, т.е. величина, обратная времени обслуживания t об:

Рассмотрим аналитические модели наиболее распространенных СМО с ожиданием, т.е. таких СМО, в которых требования, поступившие в момент, когда все обслуживающие каналы заняты, ставятся в очередь и обслуживаются по мере освобождения каналов.

Общая постановка задачи состоит в следующем. Система имеет n обслуживающих каналов, каждый из которых может одновременно обслуживать только одно требование.

В систему поступает простейший (пауссоновский) поток требований c параметром . Если в момент поступления очередного требования в системе на обслуживании уже находится не меньше n требований (т.е. все каналы заняты), то это требование становится в очередь и ждет начала обслуживания.

В системах с определенной дисциплиной обслуживания поступившее требование, застав все устройства занятыми, в зависимости от своего приоритета, либо обслуживается вне очереди, либо становится в очередь.

Основными элементами СМО являются: входящий поток требований, очередь требований, обслуживающие устройства, (каналы) и выходящий поток требований.

Изучение СМО начинается с анализа входящего потока требований. Входящий поток требований представляет собой совокупность требований, которые поступают в систему и нуждаются в обслуживании. Входящий поток требований изучается с целью установления закономерностей этого потока и дальнейшего улучшения качества обслуживания.

В большинстве случаев входящий поток неуправляем и зависит от ряда случайных факторов. Число требований, поступающих в единицу времени, случайная величина. Случайной величиной является также интервал времени между соседними поступающими требованиями. Однако среднее количество требований, поступивших в единицу времени, и средний интервал времени между соседними поступающими требованиями предполагаются заданными.

Среднее число требований, поступающих в систему обслуживания за единицу времени, называется интенсивностью поступления требований и определяется следующим соотношением:

где Т - среднее значение интервала между поступлением очередных требований.

Для многих реальных процессов поток требований достаточно хорошо описывается законом распределения Пуассона. Такой поток называется простейшим.

Простейший поток обладает такими важными свойствами:

1) Свойством стационарности, которое выражает неизменность вероятностного режима потока по времени. Это значит, что число требований, поступающих в систему в равные промежутки времени, в среднем должно быть постоянным. Например, число вагонов, поступающих под погрузку в среднем в сутки должно быть одинаковым для различных периодов времени, к примеру, в начале и в конце декады.

2) Отсутствия последействия, которое обуславливает взаимную независимость поступления того или иного числа требований на обслуживание в непересекающиеся промежутки времени. Это значит, что число требований, поступающих в данный отрезок времени, не зависит от числа требований, обслуженных в предыдущем промежутке времени. Например, число автомобилей, прибывших за материалами в десятый день месяца, не зависит от числа автомобилей, обслуженных в четвертый или любой другой предыдущий день данного месяца.

3) Свойством ординарности, которое выражает практическую невозможность одновременного поступления двух или более требований (вероятность такого события неизмеримо мала по отношению к рассматриваемому промежутку времени, когда последний устремляют к нулю).

При простейшем потоке требований распределение требований, поступающих в систему подчиняются закону распределения Пуассона:

вероятность того, что в обслуживающую систему за время t поступит именно k требований:

где. - среднее число требований, поступивших на обслуживание в единицу времени.

На практике условия простейшего потока не всегда строго выполняются. Часто имеет место нестационарность процесса (в различные часы дня и различные дни месяца поток требований может меняться, он может быть интенсивнее утром или в последние дни месяца). Существует также наличие последействия, когда количество требований на отпуск товаров в конце месяца зависит от их удовлетворения в начале месяца. Наблюдается и явление неоднородности, когда несколько клиентов одновременно пребывают на склад за материалами. Однако в целом пуассоновский закон распределения с достаточно высоким приближением отражает многие процессы массового обслуживания.

Кроме того, наличие пуассоновского потока требований можно определить статистической обработкой данных о поступлении требований на обслуживание. Одним из признаков закона распределения Пуассона является равенство математического ожидания случайной величины и дисперсии этой же величины, т.е.

Одной из важнейших характеристик обслуживающих устройств, которая определяет пропускную способность всей системы, является время обслуживания.

Время обслуживания одного требования ()- случайная величина, которая может изменятся в большом диапазоне. Она зависит от стабильности работы самих обслуживающих устройств, так и от различных параметров, поступающих в систему, требований (к примеру, различной грузоподъемности транспортных средств, поступающих под погрузку или выгрузку.

Случайная величина полностью характеризуется законом распределения, который определяется на основе статистических испытаний.

На практике чаще всего принимают гипотезу о показательном законе распределения времени обслуживания.

Показательный закон распределения времени обслуживания имеет место тогда, когда плотность распределения резко убывает с возрастанием времени t. Например, когда основная масса требований обслуживается быстро, а продолжительное обслуживание встречается редко. Наличие показательного закона распределения времени обслуживания устанавливается на основе статистических наблюдений.

При показательном законе распределения времени обслуживания вероятность события, что время обслуживания продлиться не более чем t, равна:

где v - интенсивность обслуживания одного требования одним обслуживающим устройством, которая определяется из соотношения:

где - среднее время обслуживания одного требования одним обслуживающим устройством.

Следует заметить, что если закон распределения времени обслуживания показательный, то при наличии нескольких обслуживающих устройств одинаковой мощности закон распределения времени обслуживания несколькими устройствами будет также показательным:

где n - количество обслуживающих устройств.

Важным параметром СМО является коэффициент загрузки , который определяется как отношение интенсивности поступления требований к интенсивности обслуживания v.

где a - коэффициент загрузки; - интенсивность поступления требований в систему; v - интенсивность обслуживания одного требования одним обслуживающим устройством.

Из (1) и (2) получаем, что

Учитывая, что - интенсивность поступления требований в систему в единицу времени, произведение показывает количество требований, поступающих в систему обслуживания за среднее время обслуживания одного требования одним устройством.

Для СМО с ожиданием количество обслуживаемых устройств п должно быть строго больше коэффициента загрузки (требование установившегося или стационарного режима работы СМО) :

В противном случае число поступающих требований будет больше суммарной производительности всех обслуживающих устройств, и очередь будет неограниченно расти.

Для СМО с отказами и смешанного типа это условие может быть ослаблено, для эффективной работы этих типов СМО достаточно потребовать, чтобы минимальное количество обслуживаемых устройств n было не меньше коэффициента загрузки :


1.3 Процесс имитационного моделирования

Как уже было отмечено ранее, процесс последовательной разработки имитационной модели начинается с создания простой модели, которая затем постепенно усложняется в соответствии с требованиями, предъявляемыми решаемой проблемой. В процессе имитационного моделирования можно выделить следующие основные этапы:

1. Формирование проблемы: описание исследуемой проблемы и определение целей исследования.

2. Разработка модели: логико-математическое описание моделируемой системы в соответствии с формулировкой проблемы.

3. Подготовка данных: идентификация, спецификация и сбор данных.

4. Трансляция модели: перевод модели на язык, приемлемый для используемой ЭВМ.

5. Верификация: установление правильности машинных программ.

6. Валидация: оценка требуемой точности и соответствие имитационной модели реальной системе.

7. Стратегическое и тактическое планирование: определение условий проведения машинного эксперимента с имитационной моделью.

8. Экспериментирование: прогон имитационной модели на ЭВМ для получения требуемой информации.

9. Анализ результатов: изучение результатов имитационного эксперимента для подготовки выводов и рекомендаций по решению проблемы.

10. Реализация и документирование: реализация рекомендаций, полученных на основе имитации, составление документации по модели и ее использованию.

Рассмотрим основные этапы имитационного моделирования. Первой задачей имитационного исследования является точное определение проблемы и детальная формулировка целей исследования. Как правило, определение проблемы является непрерывным процессом, который обычно осуществляется в течении всего исследования. Оно пересматривается по мере более глубокого понимания исследуемой проблемы и возникновения новых ее аспектов.

Как только сформулировано начальное определение проблемы, начинается этап построения модели исследуемой системы. Модель включает статистическое и динамическое описание системы. В статистическом описании определяются элементы системы и их характеристики, а в динамическом- взаимодействие элементов системы, в результате которых происходит изменение ее состояния во времени.

Процесс формирования модели во многом является искусством. Разработчик модели должен понять структуру системы, выявить правила ее функционирования и суметь выделить в них самое существенное, исключив ненужные детали. Модель должна быть простой для понимания и в то же время достаточно сложной, чтобы реалистично отображать характерные черты реальной системы. Наиболее важными являются принимаемые разработчиком решения относительно того, верны ли принятые упрощения и допущения, какие элементы и взаимодействия между ними должны быть включены в модель. Уровень детализации модели зависит от целей ее создания. Необходимо рассматривать только те элементы, которые имеют существенное значение для решения исследуемой проблемы. Как на этапе формирования проблемы, так и на этапе моделирования необходимо тесное взаимодействие между разработчиком модели и ее пользователями. Кроме того, тесное взаимодействие на этапах формулирования проблемы и разработки модели создает у пользователя уверенность в правильности модели, поэтому помогает обеспечить успешную реализацию результатов имитационного исследования.

На этапе разработки модели определяются требования к входным данным. Некоторые из этих данных могут уже быть в распоряжении разработчика модели, в то время как для сбора других потребуется время и усилия. Обычно значение таких входных данных задаются на основе некоторых гипотез или предварительного анализа. В некоторых случаях точные значения одного (и более) входных параметров оказывают небольшое влияние на результаты прогонов модели. Чувствительность получаемых результатов к изменению входных данных может быть оценена путем проведения серии имитационных прогонов для различных значений входных параметров. Имитационная модель, следовательно, может использоваться для уменьшения затрат времени и средств на уточнение входных данных. После того как разработана модель и собраны начальные входные данные, следующей задачей является перевод модели в форму, доступную для компьютера.

На этапах верификации и валидации осуществляется оценка функционирования имитационной модели. На этапе верификации определяется, соответствует ли запрограммированная для ЭВМ модель замыслу разработчика. Это обычно осуществляется путем ручной проверки вычисления, а также может быть использован и ряд статистических методов.

Установление адекватности имитационной модели исследуемой системы осуществляется на этапе валидации. Валидация модели обычно выполняется на различных уровнях. Специальные методы валидации включают установление адекватности путем использования постоянных значений всех параметров имитационной модели или путем оценивания чувствительности выходов к изменению значений входных данных. В процессе валидации сравнение должно осуществляться на основе анализа как реальных, так и экспериментальных данных о функционировании системы.

Условия проведения машинных прогонов модели определяется на этапах стратегического и тактического планирования. Задача стратегического планирования заключается в разработке эффективного плана эксперимента, в результате которого выясняется взаимосвязь между управляемыми переменными, либо находится комбинация значений управляемых переменных, минимизация или максимизация имитационной модели. В тактическом планировании в отличии от стратегического решается вопрос о том, как в рамках плана эксперимента провести каждый имитационный прогон, чтобы получить наибольшее количество информации из выходных данных. Важное место в тактическом планировании занимают определение условий имитационных прогонов и методы снижения дисперсии среднего значения отклика модели.

Следующие этапы в процессе имитационного исследования- проведение машинного эксперимента и анализ результатов- включают прогон имитационной модели на ЭВМ и интерпретацию полученных выходных данных. Последним этапом имитационного исследования является реализация полученных решений и документирование имитационной модели и ее использование. Ни одни из имитационных проектов не должен считаться законченным до тех пор, пока их результаты не были использованы в процессе принятия решений. Успех реализации во многом зависит от того, насколько правильно разработчик модели выполнил все предыдущие этапы процессов имитационного исследования. Если разработчик и пользователь работали в тесном контакте и достигли взаимопонимания при разработке модели и ее исследовании, то результат проекта скорее всего будет успешно внедряться. Если же между ними не было тесной взаимосвязи, то, несмотря на элегантность и адекватность имитационного моделирования, сложно будет разработать эффективные рекомендации.

Вышеперечисленные этапы редко выполняются в строго заданной последовательности, начиная с определения проблемы и кончая документированием. В ходе имитационного моделирования могут быть сбои в прогонах модели, ошибочные допущения, от которых в дальнейшем приходится отказываться, переориентировки целей исследования, повторные оценки и перестройки модели. Такой процесс позволяет разработать имитационную модель, которая дает верную оценку альтернатив и облегчает процесс принятия решений.


Глава 2. Распределения и генераторы псевдослучайных чисел

Ниже будут использованы следующие обозначения:

X - случайная величина; f(х) - функция плотности вероятности X; F(х) - функция вероятности X;

а - минимальное значение;

b - максимальное значение;

μ -математическое ожидание М[Х]; σ2 -дисперсия М[(Х-μ)2];

σ -среднеквадратичное отклонение; α-параметр функции плотности вероятности;

Очередь длины k, остается в ней с вероятностью Pk и не присоединяется к очереди с вероятностью gk=1 - Pk,". именно так обычно ведут себя люди в очередях. В системах массового обслуживания, являющихся математическими моделями производственных процессов, возможная длина очереди ограничена постоянной величиной (емкость бункера, например). Очевидно, это частный случай общей постановки. Некоторые...

1. Интенсивность потока обслуживания заявок

2. Коэффициент загрузки СМО

3. Вероятность образования очереди

4. Вероятность отказа системы

5. Пропускная способность

6. Среднее число заявок, находящихся в очереди

7. Среднее число заявок, обслуживаемых СМО

8. Среднее число заявок, находящихся в СМО

9. Среднее время заявки в СМО

10. Среднее время пребывания заявки в очереди

11. Среднее число занятых каналов.

Судить о качестве полученной системы нужно по сов-ти значений показателей. При анализе результатов моделирования важно обращать внимание на интересы клиента и владельца системы. В частности, следует min-ть или max-ть тот или иной показатель.

26. Одноканальная СМО

27. Одноканальная СМО с отказами

28. Многоканальная СМО с ограниченной очередью

Параметры СМО:

o Интенсивность потока заявок.

o Интенсивность потока обслуживания.

o Среднее t обслуживания заявки.

o Кол-во каналов обслуживания.

o Дисциплина обслуживания.

< СМО на примере работы АЗС. Несколько одинак. колонок, произв-ть кот.известна. Если колонки заняты, то обслуживание в очереди м. ждать не > 3х машин одновременно. Очередь считаем общей. Если все места в очереди заняты, то машина получает отказ в обслуживании.

29. Транспортная задача

- широкий круг задач не только транспортного хар-ра, распределение ресурсов, наход-ся у неск. поставщиков, д/другого произвольного числа потребителей. Д/перевозчиков наиболее часто отн-ся к транспорту:

1. Привязка потребителей к ресурсам производителей.

2. Привязка к пунктам назначения пунктов отправления.

3. Взаимопривязка грузопотока прямого и обратного направления.

4. Оптимальное распределение V выпуска промышл. продукции м/у изготов-ми.

< модель привязки к пункту назначения. Известны: пункты отправления и назначения, объемы отправления по к-му пункту, потребность в грузе, стоимость доставки по каждому варианту. Н. оптимальный план перевозок с min транспортными издержками.

30. Тр. задача закрытая - ∑Vотправл. грузов= ∑V потреб-ти в этом грузе, т.е. ∑ai=∑bj (m – число поставщиков, n – число потребителей).

31 . Если это условие невозможно – открытая тр. задача . Тогда ее надо привести к закрытой:

1. Если потребность пунктов назначения превышает запасы пунктов отправления, то вводится фиктивный поставщик с недостающимV отправления.

2. Весь запас поставщиков > потребности, то ввод-сяфикт. потребитель.

32. Алгоритм решения задачи методом потенциалов (этапы):

1. Разработка начального плана (опорного решения).

2. Расчет потенциалов.

3. Проверка плана на оптимальность.

4. Поиск max звена не оптимальности (если п.3 не выполнен)

5. Составление контура перераспределения ресурсов.

6. Определение min эл-та в контуре перераспр-ния и перераспр. ресурсов по контуру.

7. Получение нового плана.

Эта процедура повторяется несколько раз, пока не будет найдено оптимальное решение. Алгоритм остается неизменным.Методы отыскания начального плана:

1. Метод С-З угла

2. Метод min стоимости

3. Метод двойного предпочтения

Метод потенциалов позволяет за конечное число планов найти оптимальный. (Метод Фогеля) Метод потенциалов разработан д/классич. транспорт.задач, но такие встречаются редко, приходится вводить ряд ограничений.

33. В экономике организации встреч-ся норма задач, кот.м.б. сведены к транспортной задаче:

1. Отд. поставки от опред. поставщиков некот. потребителями д.б. исключены из-за отсутствия необх. усл. хранения, перегрузки коммуникаций, и т.д.

2. Организ. необх. опред. min ∑затраты на пр-во и транспортировку продукции. М. оказаться экономич. более выгодным доставлять сырье из более отдал.пунктов, но при <себест-ти. Критерий оптимальности принимает ∑ затрат на пр-во и тран-ку.

3. Ряд трансп. маршрутов имеют ограничения по пропускной спос-ти.

4. Поставки по определ. маршрутам обязательны и обязат. д. войти в оптим. план.

5. Экономическая задача не является транспортной. (Пр. – распределение произв. изделий м/у предприятиями).

6. Необходимость max-ть целевую ф-ю задачи транспортного типа.

7. Необходимость в одно и то же t распределить груз различного рода по потребителям – Многопродуктовая транспортная задача .

8. Доставка грузов в краткий срок. (Метод потенциалов не пригоден, решается с пом. спец. алгоритма).

34. Транспортная задача в сетевой подстановке

Если условие транспортной задачи задано в виде схемы, на кот.изображены поставщики, потребители и связыв. их дороги, указаны величины запасов груза и потребностей в нем и показатели критерия оптимальности (тарифы, расстояния).В вершинах (узлах) сети изображают поставщиков и потребителей. Запасы груза считают положительными, а потребности отрицательными числами. Ребра (дуги) сети – дороги.Решение трансп. задачи в сетевой постановке основано на методе потенциалов и нач-ся с построения начального опорного плана, который должен удовлетворять требованиям:

1. Все запасы должны быть распределены, а потребители удовлетворены.

2. Для каждой вершины должна быть указана поставка груза (+ или -)

3. Общее количество поставок должно быть на 1 меньше числа вершин.

4. Стрелки, которыми обозначают поставки, не д. образовывать замкн. контур.

Затем план проверяют на оптимальность, для чего вычисляют потенциалы. Получают новый план и снова исследуют на оптимальность. Определяют значение целевой функции.

В случае открытой модели вводят фиктивного потребителя или поставщика.

35. Д/решения научных и практических задач в области логистики прим. основные методы:

1. Методы системного анализа

2. Методы теории исследования операции

3. Кибернетические методы

4. Метод прогнозирования

5. Методы экспертных оценок

6. Методы моделирования

36. Наиболее часть в логистике применяется имитац. моделирование, в кот.закономерности, определяющие количественное отношение остаются неизвестными, а сам логистический процесс остается «черным ящиком» или «серым ящиком».

К основным процессам имитац. моделирования отн-ся:

1. Конструирование модели реальной системы.

2. Постановка экспериментов на этой модели.

Цели моделирования:

o Определение поведения логистической системы.

o Выбор стратегии д/обеспеч. наиб.эфф-го функционирования логистич. системы.

Имитац. моделирование целесообразно исполнять, когда вып-ся условия:

1. Не сущ. законченой постановки задач или не разработаны аналитические методы решения сформулиров. матем. модели.

2. Аналитич. модель имеется, но процедуры сложны и трудоемки, сл. имитац. моделирование дает более простой способ решения задачи.

3. Аналитич. решения сущ., но их реализация невозможна из-за недостаточной математической подготовки персонала.

37. Широкое применение в логистике нашли экспертные системы – спец. комп.программы, кот. помогают специалистам принимать решения, связ. с управлением материальным потоком.

Экспертная система позволяет:

1. Принимать быстрые и качественные решения в области управления материальными потоками.

2. подготовить опытных специалистов за отн-но короткий срок.

4. Использовать опыт и знания высококвалифицированных специалистов на различных рабочих местах.

Недостатки экспертной системы:

1. Ограниченные воз-ти использования здравого смысла.

2. Невозм-но учесть все особенности в программе экспертной системы.

Расчет показателей эффективности открытой одноканальной СМО с отказами. Расчет показателей эффективности открытой многоканальной СМО с отказами. Расчет показателей эффективности многоканальной СМО с ограничением на длину очереди. Расчет показателей эффективности многоканальной СМО ожиданием.

1. Потоки заявок в СМО

2. Законы обслуживания

3. Критерии качества работы СМО

4.

5. Параметры моделей очередей. При анализе систем массового

6. I. Модель А – модель одноканальной системы массового об­служивания с Пуассоновским входным потоком заявок и Экспоненциальным временем обслуживания.

7. II. Модель В – многоканальная система обслуживания.

8. III. Модель С – модель с постоянным временем обслуживания.

9. IV. Модель D – модель с ограниченной популяцией.

Потоки заявок в СМО

Потоки заявок бывают входные и выходные.
Входной поток заявок – это временная последовательность событий на входе СМО, для которой появление события (заявки) подчиняется вероятностным (или детерминированным) законам. Если требования на обслуживание приходят в соответствие, с каким – либо графиком (например, автомобили приезжают на АЗС каждые 3 минуты) то такой поток подчиняется детерминированным (определенным) законам. Но, как правило, поступление заявок подчиняется случайным законам.
Для описания случайных законов в теории массового обслуживания вводится в рассмотрение модель потоков событий. Потоком событий называется последовательность событий, следующих одно за другим в случайные моменты времени .
В качестве событий могут фигурировать поступление заявок на вход СМО (на вход блока очереди), появление заявок на входе прибора обслуживания (на выходе блока очереди) и появление обслуженных заявок на выходе СМО.

Потоки событий обладают различными свойствами, которые позволяют различать различные типы потоков. Прежде всего, потоки могут быть однородными инеоднородными.
Однородные потоки – такие потоки, в которых поток требований обладает одинаковыми свойствами: имеют приоритет первым пришел – первым обслужен, обрабатываемые требования имеют одинаковые физические свойства.
Неоднородные потоки – такие потоки, в которых требования обладают неодинаковыми свойствами: требования удовлетворяются по принципу приоритетности (пример, карта прерываний в ЭВМ), обрабатываемые требования имеют различные физические свойства.
Схематично неоднородный поток событий может быть изображен следующим образом

Соответственно можно использовать несколько моделей СМО для обслуживания неоднородных потоков: одноканальная СМО с дисциплиной очереди, учитывающей приоритеты неоднородных заявок, и многоканальная СМО с индивидуальным каналом для каждого типа заявок.
Регулярным потоком называется поток, в котором события следуют одно за другим через одинаковые промежутки времени. Если обозначить через – моменты появления событий, причем , а через интервалы между событиями, то для регулярного потока

Рекуррентный поток соответственно определяется как поток, для которого все функции распределения интервалов между заявками

совпадают, то есть

Физически рекуррентный поток представляет собой такую последовательность событий, для которой все интервалы между событиями как бы "ведут себя" одинаково, т.е. подчиняются одному и тому же закону распределения. Таким образом, можно исследовать только один какой-нибудь интервал и получить статистические характеристики, которые будут справедливы для всех остальных интервалов.
Для характеристики потоков очень часто вводят в рассмотрение вероятность распределения числа событий в заданном интервале времени , которая определяется следующим образом:

где – число событий, появляющихся на интервале .
Поток без последействия характеризуется тем свойством, что для двух непересекающихся интервалов времени и , где , , , вероятность появления числа событий на втором интервале не зависит от числа появления событий на первом интервале.

Отсутствие последействия означает отсутствие вероятностной зависимости последующего течения процесса от предыдущего. Если имеется одноканальная СМО с временем обслуживания , то при потоке заявок без последействия на входе системы выходной поток будет с последействием, так как заявки на выходе СМО не появляются чаще чем интервал . В регулярном потоке, в котором события следуют друг за другом через определенные промежутки времени, имеется самое жесткое последействие.
Потоком с ограниченным последействием называется такой поток, для которого интервалы между событиями независимы.
Поток называется стационарным, если вероятность появления какого-то числа событий на интервале времени зависит только от длины этого интервала и не зависит от его расположения на оси времени. Для стационарного потока событий среднее число событий в единицу времени постоянно.
Ординарным потоком называется такой поток, для которого вероятность попадания на данный малый отрезок времени dt двух и более требований пренебрежительно мала по сравнению с вероятностью попадания одного требования.
Поток, который обладает свойствами стационарности, отсутствия последействия и ординарности называют пуассоновским (простейшим). Этот поток занимает центральное место среди всего многообразия потоков, так же как случайные величины или процессы с нормальным законом распределения в прикладной теории вероятности.
Пуассоновский поток описывается следующей формулой:
,
где – вероятность появления событий за время , – интенсивность потока.
Интенсивностью потока называют среднее число событий, которые появляются за единицу времени.
Для пуассоновского потока интервалы времени между заявками распределены по экспоненциальному закону

Потоком с ограниченным последействием, для которого интервалы времени между заявками распределены по нормальному закону, называется нормальным потоком.

Законы обслуживания

Режим обслуживания (время обслуживания), так же как и режим поступления заявок, может быть либо постоянным, либо случайным. Во многих случаях время обслуживания подчиняется экспоненциальному распределению.
Вероятность того, что обслуживание закончится до момента t, равна:

где – плотность потока заявок
Откуда плотность распределения времени обслуживания

Дальнейшим обобщением экспоненциального закона обслуживания может служить закон распределения Эрланга, когда каждый интервал обслуживания подчиняется закону:

где – интенсивность исходного пуассоновского потока, k – порядок потока Эрланга.

Критерии качества работы СМО

Эффективность работы СМО оценивается различными показателями в зависимости от цепи и типа СМО. Наибольшее распространение получили следующие:

Абсолютная пропускная способность СМО с отказами (производительность системы) – среднее число требований, которые может обработать система.

Относительная пропускная способность СМО – отношение среднего числа требований, обработанных системой, к среднему числу требований, поступивших на вход СМО.

Средняя длительность простоя системы.

Для СМО с очередью добавляются такие характеристики:
Длина очереди, которая зависит от ряда факторов: от того, когда и сколько требований поступило в систему, сколько времени затрачено на обслуживание требований, которые поступили. Длина очереди является случайной величиной. От длины очереди зависит эффективность работы системы массового обслуживания.

Для СМО с ограниченным ожиданием в очереди важны все перечисленные характеристики, а для систем с неограниченным ожиданием абсолютная и относительная пропускная способности СМО теряют смысл.

На рис. 1 приведены системы обслуживания различной кон­фигурации.

Параметры моделей очередей. При анализе систем массового обслуживания используются технические и экономические харак­теристики.

Наиболее часто используются следующие Технические характери­стики:

1) среднее время, которое клиент проводит в очереди;

2) средняя длина очереди;

3) среднее время, которое клиент проводит в системе обслужи­вания (время ожидания плюс время обслуживания);

4) среднее число клиентов в системе обслуживания;

5) вероятность того, что система обслуживания окажется незанятой;

6) вероятность определенного числа клиентов в системе.

Среди Экономических характеристик наибольший интерес пред­ставляют следующие:

1) издержки ожидания в очереди;

2) издержки ожидания в системе;

3) издержки обслуживания.

Модели систем массового обслуживания . В зависимости от со­четания приведенных выше характеристик могут рассматривать­ся различные модели систем массового обслуживания.

Здесь мы ознакомимся с несколькими наиболее известными моделями. Все они имеют следующие общие характеристики:

А) пуассоновское распределение вероятностей поступления заявок;

Б) стандартное поведение клиентов;

В) правило обслуживания FIFO (первым пришел - первым об­служен);

Г) единственная фаза обслуживания.

I. Модель А - модель одноканальной системы массового об­служивания М/М/1 с Пуассоновским входным потоком заявок и Экспоненциальным временем обслуживания.

Наиболее часто встречаются задачи массового обслуживания с единственным каналом. В этом случае клиенты формируют одну очередь к единственному пункту обслуживания. Предположим, что для систем этого типа выполняются следующие условия:

1. Заявки обслуживаются по принципу «первым пришел - пер­вым обслужен» (FIFO), причем каждый клиент ожидает своей очереди до конца независимо от длины очереди.

2. Появления заявок являются независимыми событиями, од­нако среднее число заявок, поступающих в единицу времени, не­изменно.

3. Процесс поступления заявок описывается пуассоновским распределением, причем заявки поступают из неограниченного множества.

4. Время обслуживания описывается экспоненциальным рас­пределением вероятностей.

5. Темп обслуживания выше темпа поступления заявок.

Пусть λ – число заявок в единицу времени;

μ – число клиентов, обслуживаемых в единицу времени;

n – число заявок в системе.

Тогда система массового обслуживания описывается уравнени­ями, приведенными ниже.

Формулы для описания системы М/М/1:

Среднее время обслуживания одного клиента в системе (время ожидания плюс время обслуживания);

Среднее число клиентов в очереди;

Среднее время ожидания клиента в очереди;

Характеристика загруженности системы (доля време­ни, в течение которого система занята обслуживанием);

Вероятность отсутствия заявок в системе;

Вероятность того, что в системе находится бо­лее чем K заявок.

II. Модель В - многоканальная система обслуживания M/M/S. В многоканальной системе для обслуживания открыты два ка­нала или более. Предполагается, что клиенты ожидают в общей очереди и обращаются в первый освободившийся канал обслужи­вания.

Пример такой многоканальной однофазовой системы можно увидеть во многих банках: из общей очереди клиенты обращают­ся в первое освободившееся окошко для обслуживания.

В многоканальной системе поток заявок подчиняется Пуассоновскому закону, а время обслуживания -Экспоненциальному. Приходящий первым обслуживается первым, и все каналы обслу­живания работают в одинаковом темпе. Формулы, описывающие модель В, достаточно сложны для использования. Для расчета параметров многоканальной системы обслуживания удобно ис­пользовать соответствующее программное обеспечение.

Время нахождения заявки в очереди;

Время нахождения заявки в системе.

III. Модель С - модель с постоянным временем обслуживания M/D/1.

Некоторые системы имеют Постоянное, а не экспоненциально распределенное время обслуживания. В таких системах клиенты обслуживаются в течение фиксированного периода времени, как, например, на автоматической мойке автомобилей. Для модели С С постоянным темпом обслуживания значения величин Lq и Wq Вдвое меньше, чем соответствующие значения в модели А, име­ющей переменный темп обслуживания.

Формулы, описывающие модель С:

Средняя длина очереди;

Среднее время ожидания в очереди;

Среднее число клиентов в системе;

Среднее время ожидания в системе.

IV. Модель D - модель с ограниченной популяцией.

Если число потенциальных клиентов системы обслуживания Ограничено, мы имеем дело со специальной моделью. Такая за­дача может возникнуть, например, если речь идет об обслужива­нии оборудования фабрики, имеющей пять станков.

Особенность этой модели по сравнению с тремя рассмотрен­ными ранее в том, что существует Взаимозависимостьмежду длиной очереди и темпом поступления заявок.

V. Модель Е - модель с ограниченной очередью. Модель от­личается от предыдущих тем, что число мест в очереди Ограни­чено. В этом случае заявка, прибывшая в систему, когда все ка­налы и места в очереди заняты, покидает систему необслуженной, т. е. получает отказ.

Как частный случай модели с ограниченной очередью можно рассматривать Модель с отказами, если количество мест в очере­ди сократить до нуля.

4. ТЕОРИЯ МАССОВОГО ОБСЛУЖИВАНИЯ

4.1. Классификация систем массового обслуживания и их показатели эффективности

Системы, в которых в случайные моменты времени возникают заявки на обслуживание и имеются устройства для обслуживания этих заявок, называются системами массового обслуживания (СМО).

СМО могут быть классифицированы по признаку организации обслуживания следующим образом:

Системы с отказами не имеют очередей.

Системы с ожиданием имеют очереди.

Заявка, поступившая в момент, когда все каналы обслуживания заняты:

Покидает систему с отказами;

Становится в очередь на обслуживание в системах с ожиданием при неограниченной очереди или на свободное место при ограниченной очереди;

Покидает систему с ожиданием при ограниченной очереди, если в этой очереди нет свободного места.

В качестве меры эффективности экономической СМО рассматривают сумму потерь времени:

На ожидание в очереди;

На простои каналов обслуживания.

Для всех видов СМО используются следующие показатели эффективности :

- относительная пропускная способность - это средняя доля поступающих заявок, обслуживаемых системой;

- абсолютная пропускная способность - это среднее число заявок, обслуживаемых системой в единицу времени;

- вероятность отказа - это вероятность того, что заявка покинет систему без обслуживания;

- среднее число занятых каналов - для многоканальных СМО.

Показатели эффективности СМО рассчитываются по формулам из специальных справочников (таблиц). Исходными данными для таких расчетов являются результаты моделирования СМО.


4.2. Моделирование системы массового обслуживания:

основ­ные параметры, граф состояний

При всем многообразии СМО они имеют общие черты , которые позволяют унифицировать их моделирование для нахождения наиболее эффективных вариантов организации таких систем .

Для моделирования СМО необходимо иметь следующие исходные данные:

Основные параметры;

Граф состояний.

Результатами моделирования СМО являются вероятности ее состояний, через которые выражаются все показатели ее эффективности.

Основные параметры для моделирования СМО включают:

Характеристики входящего потока заявок на обслуживание;

Характеристики механизма обслуживания.

Рассмотрим характеристики потока заявок .

Поток заявок - последовательность заявок, поступающих на обслуживание.

Интенсивность потока заявок - среднее число заявок, поступающих в СМО в единицу времени.

Потоки заявок бывают простейшими и отличными от простейших.

Для простейших потоков заявок используются модели СМО.

Простейшим , или пуассоновским называется поток, являющийся стационарным , одинарным и в нем отсутствуют последействия .

Стационарность означает неизменность интенсивности поступления заявок с течением времени.

Одинарным поток заявок является в том случае, когда за малый промежуток времени вероятность поступления более чем одной заявки близка к нулю.

Отсутствие последействия заключается в том, что число заявок, поступивших в СМО за один интервал времени, не влияет на количество заявок, полученных за другой интервал времени.

Для отличных от простейших потоков заявок используются имитационные модели.

Рассмотрим характеристики механизма обслуживания .

Механизм обслуживания характеризуется:

- числом каналов обслуживания ;

Производительностью канала, или интенсивностью обслуживания - средним числом заявок, обслуживаемых одним каналом в единицу времени;

Дисциплиной очереди (например, объемом очереди , порядком отбора из очереди в механизм обслуживания и т. п.).

Граф состояний описывает функционирование системы обслуживания как переходы из одного состояния в другое под действием потока заявок и их обслуживания.

Для построения графа состояний СМО необходимо:

Составить перечень всех возможных состояний СМО;

Представить перечисленные состояния графически и отобразить возможные переходы между ними стрелками;

Взвесить отображенные стрелки, т. е. приписать им числовые значения интенсивностей переходов, определяемые интенсивностью потока заявок и интенсивностью их обслуживания.

4.3. Вычисление вероятностей состояний

системы массового обслуживания


Граф состояний СМО со схемой "гибели и рождения" представляет собой линейную цепочку, где каждое из средних состояний имеет прямую и обратную связь с каждым из соседних состояний, а крайние состояния только с одним соседним:

Число состояний в графе на единицу больше, чем суммарное число каналов обслуживания и мест в очереди.

СМО может быть в любом из своих возможных состояний, поэтому ожидаемая интенсивность выхода из какого-либо состояния равна ожидаемой интенсивности входа системы в это состояние. Отсюда система уравнений для определения вероятностей состояний при простейших потоках будет иметь вид:


где - вероятность того, что система находится в состоянии

- интенсивность перехода, или среднее число переходов системы в единицу времени из состояния в состояние .

Используя эту систему уравнений, а также уравнение

вероятность любого -ого состояния можно вычислить по следующему общему правилу :

вероятность нулевого состояния рассчитывается как

а затем берется дробь, в числителе которой стоит произведение всех интенсивностей потоков по стрелкам, ведущим слева направо от состояния до состояния а в знаменателе - произведение всех интенсивностей по стрелкам, идущим справа налево от состояния до состояния , и эта дробь умножается на рассчитанную вероятность

Выводы по четвертому разделу

Системы массового обслуживания имеют один или несколько каналов обслуживания и могут иметь ограниченную или неограниченную очередь (системы с ожиданием) заявок на обслуживание, не иметь очереди (системы с отказами). Заявки на обслуживание возникают в случайные моменты времени. Системы массового обслуживания характеризуются следующими показателями эффективности: относительная пропускная способность, абсолютная пропускная способность, вероятность отказа, среднее число занятых каналов.

Моделирование систем массового обслуживания осуществляется для нахождения наиболее эффективных вариантов их организации и предполагает следующие исходные данные для этого: основные параметры, граф состояний. К таким данным относятся следующие: интенсивность потока заявок, количество каналов обслуживания, интенсивность обслуживания и объем очереди. Число состояний в графе на единицу больше, чем сумма числа каналов обслуживания и мест в очереди.

Вычисление вероятностей состояний системы массового обслуживания со схемой «гибели и рождения» осуществляется по общему правилу.

Вопросы для самопроверки

Какие системы называются системами массового обслуживания?

Как классифицируются системы массового обслуживания по признаку их организации?

Какие системы массового обслуживания называются системами с отказами, а какие – с ожиданием?

Что происходит с заявкой, поступившей в момент времени, когда все каналы обслуживания заняты?

Что рассматривают в качестве меры эффективности экономической системы массового обслуживания?

Какие используются показатели эффективности системы массового обслуживания?

Что служит исходными данными для расчетов показателей эффективности систем массового обслуживания?

Какие исходные данные необходимы для моделирования систем массового обслуживания?

Через какие результаты моделирования системы массового обслуживания выражают все показатели ее эффективности?

Что включают основные параметры для моделирования систем массового обслуживания?

Чем характеризуются потоки заявок на обслуживание?

Чем характеризуются механизмы обслуживания?

Что описывает граф состояний системы массового обслуживания

Что необходимо для построения графа состояний системы массового обслуживания?

Что представляет собой граф состояний системы массового обслуживания со схемой «гибели и рождения»?

Чему равно число состояний в графе состояний системы массового обслуживания?

Какой вид имеет система уравнений для определения вероятностей состояний системы массового обслуживания?

По какому общему правилу вычисляется вероятность любого состояния системы массового обслуживания?

Примеры решения задач

1. Построить граф состояний системы массового обслуживания и привести основные зависимости ее показателей эффективности.

а) n-канальная СМО с отказами (задача Эрланга)

Основные параметры:

Каналов ,

Интенсивность потока ,

Интенсивность обслуживания .

Возможные состояния системы:

Все каналов заняты ( заявок в системе).

Граф состояний:

Относительная пропускная способность ,

Вероятность отказа ,

Среднее число занятых каналов .

б) n-канальная СМО с m-ограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Один канал занят, остальные свободны (одна заявка в системе);

Два канала заняты, остальные свободны (две заявки в системе);

...................................................................................

Все каналы заняты, две заявки в очереди;

Все каналы заняты, заявок в очереди.

Граф состояний:

в) Одноканальная СМО с неограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Канал занят, ноль заявок в очереди;

Канал занят, одна заявка в очереди;

...................................................................................

Канал занят, заявка в очереди;

....................................................................................

Граф состояний:

Показатели эффективности системы:

,

Среднее время пребывания заявки в системе ,

,

,

Абсолютная пропускная способность ,

Относительная пропускная способность .

г) n-канальная СМО с неограниченной очередью

Возможные состояния системы:

Все каналы свободны (ноль заявок в системе);

Один канал занят, остальные свободны (одна заявка в системе);

Два канала заняты, остальные свободны (две заявки в системе);

...................................................................................

Все каналов заняты ( заявок в системе), ноль заявок в очереди;

Все каналы заняты, одна заявка в очереди;

....................................................................................

Все каналы заняты, заявок в очереди;

....................................................................................

Граф состояний:

Показатели эффективности системы:

Среднее число занятых каналов ,

Среднее число заявок в системе ,

Среднее число заявок в очереди ,

Среднее время пребывания заявки в очереди .

2. Вычислительный центр имеет три ЭВМ. В центр поступает на решение в среднем четыре задачи в час. Среднее время решения одной задачи - полчаса. Вычислительный центр принимает и ставит в очередь на решение не более трех задач. Необходимо оценить эффективность центра.

РЕШЕНИЕ. Из условия ясно, что имеем многоканальную СМО с ограниченной очередью:

Число каналов ;

Интенсивность потока заявок (задача / час);

Время обслуживания одной заявки (час / задача), интенсивность обслуживания (задача / час);

Длина очереди .

Перечень возможных состояний:

Заявок нет, все каналы свободны;

Один канал занят, два свободны;

Два канала заняты, один свободен;

Три канала заняты;

Три канала заняты, одна заявка в очереди;

Три канала заняты, две заявки в очереди;

Три канала заняты, три заявки в очереди.

Граф состояний:

Рассчитаем вероятность состояния :

Показатели эффективности:

Вероятность отказа (все три ЭВМ заняты и три заявки стоят в очереди)

Относительная пропускная способность

Абсолютная пропускная способность

Среднее число занятых ЭВМ

3. (Задача с использованием СМО с отказами.) В ОТК цеха работают три контролера. Если деталь поступает в ОТК, когда все контролеры заняты обслуживанием ранее поступивших деталей, то она проходит непроверенной. Среднее число деталей, поступающих в ОТК в течение часа, равно 24, среднее время, которое затрачивает один контролер на обслуживание одной детали, равно 5 мин. Определить вероятность того, деталь пройдет ОТК необслуженной, насколько загружены контролеры и сколько их необходимо поставить, чтобы (* - заданное значение ).

РЕШЕНИЕ. По условию задачи , тогда .

1) Вероятность простоя каналов обслуживания:

,

3) Вероятность обслуживания:

4) Среднее число занятых обслуживанием каналов:

.

5) Доля каналов, занятых обслуживанием:

6) Абсолютная пропускная способность:

При . Произведя аналогичные расчеты для , получим

Так как , то произведя расчеты для , получим

ОТВЕТ. Вероятность того, что при деталь пройдет ОТК необслуженной, составляет 21%, и контролеры будут заняты обслуживанием на 53%.

Чтобы обеспечить вероятность обслуживания более 95%, необходимо не менее пяти контролеров.

4. (Задача с использованием СМО с неограниченным ожиданием.) Сберкасса имеет трех контролеров-кассиров () для обслуживания вкладчиков . Поток вкладчиков поступает в сберкассу с интенсивностью чел./ч. Средняя продолжительность обслуживания контролером-кассиром одного вкладчика мин.

Определить характеристики сберкассы как объекта СМО.

РЕШЕНИЕ. Интенсивность потока обслуживания , интенсивность нагрузки .

1) Вероятность простоя контролеров-кассиров в течение рабочего дня (см. предыдущую задачу №3):

.

2) Вероятность застать всех контролеров-кассиров занятыми:

.

3) Вероятность очереди:

.

4) Среднее число заявок в очереди:

.

5) Среднее время ожидания заявки в очереди:

мин.

6) Среднее время пребывания заявки в СМО:

7) Среднее число свободных каналов:

.

8) Коэффициент занятости каналов обслуживания:

.

9) Среднее число посетителей в сберкассе:

ОТВЕТ. Вероятность простоя контролеров-кассиров равна 21% рабочего времени , вероятность посетителю оказаться в очереди составляет 11,8%, среднее число посетителей в очереди 0,236 чел., среднее время ожидания посетителями обслуживания 0,472 мин.

5. (Задача с применением СМО с ожиданием и с ограниченной длиной очереди.) Магазин получает ранние овощи из пригородных теплиц. Автомобили с грузом прибывают в разное время с интенсивностью машин в день. Подсобные помещения и оборудование для подготовки овощей к продаже позволяют обрабатывать и хранить товар, привезенный двумя автомашинами (). В магазине работают три фасовщика (), каждый из которых в среднем может обрабатывать товар с одной машины в течение ч. Продолжительность рабочего дня при сменной работе составляет 12 ч.

Определить, какова должна быть емкость подсобных помещений, чтобы вероятность полной обработки товаров была .

РЕШЕНИЕ. Определим интенсивность загрузки фасовщиков:

Авт./дн.

1) Найдем вероятность простоя фасовщиков при отсутствии машин (заявок):

причем 0!=1,0.

2) Вероятность отказа в обслуживании:

.

3) Вероятность обслуживания:

Так как , произведем аналогичные вычисления для , получим), при этом вероятность полной обработки товара будет .

Задания для самостоятельной работы

Для каждой из следующих ситуаций определить:

a) к какому классу относится объект СМО;

b) число каналов ;

c) длину очереди ;

d)интенсивность потока заявок ;

e) интенсивность обслуживания одним каналом;

f) количество всех состояний объекта СМО.

В ответах указать значения по каждому пункту, используя следующие сокращения и размерности:

a) ОО – одноканальная с отказами; МО – многоканальная с отказами; ОЖО – одноканальная с ожиданием с ограниченной очередью; ОЖН - одноканальная с ожиданием с неограниченной очередью; МЖО – многоканальная с ожиданием с ограниченной очередью; МЖН - многоканальная с ожиданием с неограниченной очередью;

b) =… (единиц);

c) =… (единиц);

d) =ххх/ххх (единиц /мин);

e) =ххх/ххх (единиц /мин);

f) (единиц).

1. Дежурный по администрации города имеет пять телефонов. Телефонные звонки поступают с интенсивностью 90 заявок в час, средняя продолжительность разговора составляет 2 мин.

2. На стоянке автомобилей возле магазина имеются 3 места, каждое из которых отводится под один автомобиль. Автомобили прибывают на стоянку с интенсивностью 20 автомобилей в час. Продолжительность пребывания автомобилей на стоянке составляет в среднем 15 мин. Стоянка на проезжей части не разрешается.

3. АТС предприятия обеспечивает не более 5 переговоров одновременно. Средняя продолжительность разговоров составляет 1 мин. На станцию поступает в среднем 10 вызовов в сек.

4. В грузовой речной порт поступает в среднем 6 сухогрузов в сутки. В порту имеются 3 крана, каждый из которых обслуживает 1 сухогруз в среднем за 8 ч. Краны работают круглосуточно. Ожидающие обслуживания сухогрузы стоят на рейде.

5. В службе «Скорой помощи» поселка круглосуточно дежурят 3 диспетчера, обслуживающие 3 телефонных аппарата. Если заявка на вызов врача к больному поступает, когда диспетчеры заняты, то абонент получает отказ. Поток заявок составляет 4 вызова в минуту. Оформление заявки длится в среднем 1,5 мин.

6. Салон-парикмахерская имеет 4 мастера. Входящий поток посетителей имеет интенсивность 5 человек в час. Среднее время обслуживания одного клиента составляет 40 мин. Длина очереди на обслуживание считается неограниченной.

7. На автозаправочной станции установлены 2 колонки для выдачи бензина. Около станции находится площадка на 2 автомашины для ожидания заправки. На станцию прибывает в среднем одна машина в 3 мин. Среднее время обслуживания одной машины составляет 2 мин.

8. На вокзале в мастерской бытового обслуживания работают три мастера. Если клиент заходит в мастерскую, когда все мастера заняты, то он уходит из мастерской, не ожидая обслуживания. Среднее число клиентов, обращающихся в мастерскую за 1 ч, равно 20. Среднее время, которое затрачивает мастер на обслуживание одного клиента, равно 6 мин.

9. АТС поселка обеспечивает не более 5 переговоров одновременно. Время переговоров в среднем составляет около 3 мин. Вызовы на станцию поступают в среднем через 2 мин.

10. На автозаправочной станции (АЗС) имеются 3 колонки. Площадка при станции, на которой машины ожидают заправку, может вместить не более одной машины, и если она занята, то очередная машина, прибывшая к станции, в очередь не становится, а проезжает на соседнюю станцию. В среднем машины прибывают на станцию каждые 2 мин. Процесс заправки одной машины продолжается в среднем 2,5 мин.

11. В небольшом магазине покупателей обслуживают два продавца. Среднее время обслуживания одного покупателя – 4 мин. Интенсивность потока покупателей – 3 человека в минуту. Вместимость магазина такова, что одновременно в нем в очереди могут находиться не более 5 человек. Покупатель, пришедший в переполненный магазин, когда в очереди уже стоят 5 человек, не ждет снаружи и уходит.

12. Железнодорожную станцию дачного поселка обслуживает касса с двумя окнами. В выходные дни, когда население активно пользуется железной дорогой, интенсивность потока пассажиров составляет 0,9 чел./мин. Кассир затрачивает на обслуживание пассажира в среднем 2 мин.

Для каждой из указанных в вариантах СМО интенсивность потока заявок равна и интенсивность обслуживания одним каналом . Требуется:

Составить перечень возможных состояний;

Построить граф состояний по схеме "гибели и размножения".

В ответе указать для каждой задачи:

Количество состояний системы;

Интенсивность перехода из последнего состояния в предпоследнее.

Вариант № 1

1. одноканальная СМО с очередью длиной в 1 заявку

2. 2-канальная СМО с отказами (задача Эрланга)

3. 31-канальная СМО с 1-ограниченной очередью

5. 31-канальная СМО с неограниченной очередью

Вариант № 2

1. одноканальная СМО с очередью длиной в 2 заявки

2. 3-канальная СМО с отказами (задача Эрланга)

3. 30-канальная СМО с 2-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 30-канальная СМО с неограниченной очередью

Вариант № 3

1. одноканальная СМО с очередью длиной в 3 заявки

2. 4-канальная СМО с отказами (задача Эрланга)

3. 29-канальная СМО с 3-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 29-канальная СМО с неограниченной очередью

Вариант № 4

1. одноканальная СМО с очередью длиной в 4 заявки

2. 5-канальная СМО с отказами (задача Эрланга)

3. 28-канальная СМО с 4-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 28-канальная СМО с неограниченной очередью

Вариант № 5

1. одноканальная СМО с очередью длиной в 5 заявок

2. 6-канальная СМО с отказами (задача Эрланга)

3. 27-канальная СМО с 5-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 27-канальная СМО с неограниченной очередью

Вариант № 6

1. одноканальная СМО с очередью длиной в 6 заявок

2. 7-канальная СМО с отказами (задача Эрланга)

3. 26-канальная СМО с 6-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 26-канальная СМО с неограниченной очередью

Вариант № 7

1. одноканальная СМО с очередью длиной в 7 заявок

2. 8-канальная СМО с отказами (задача Эрланга)

3. 25-канальная СМО с 7-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 25-канальная СМО с неограниченной очередью

Вариант № 8

1. одноканальная СМО с очередью длиной в 8 заявок

2. 9-канальная СМО с отказами (задача Эрланга)

3. 24-канальная СМО с 8-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 24-канальная СМО с неограниченной очередью

Вариант № 9

1. одноканальная СМО с очередью длиной в 9 заявок

2. 10-канальная СМО с отказами (задача Эрланга)

3. 23-канальная СМО с 9-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 23-канальная СМО с неограниченной очередью

Вариант № 10

1. одноканальная СМО с очередью длиной в 10 заявок

2. 11-канальная СМО с отказами (задача Эрланга)

3. 22-канальная СМО с 10-ограниченной очередью

4. Одноканальная СМО с неограниченной очередью

5. 22-канальная СМО с неограниченной очередью