Механические свойства меди. Физические и химические свойства меди Основные свойства меди

Медь

Медь (лат. Cuprum) - химический элемент I группы периодической системы Менделеева (атомный номер 29, атомная масса 63,546). В соединения медь обычно проявляет степени окисления +1 и +2, известны также немногочисленные соединения трехвалентной меди. Важнейшие соединения меди: оксиды Cu 2 O, CuO, Cu 2 O 3 ; гидроксид Cu(OH) 2 , нитрат Cu(NO 3) 2 . 3H 2 O, сульфид CuS, сульфат(медный купорос) CuSO 4 . 5H 2 O, карбонат CuCO 3 Cu(OH) 2 , хлорид CuCl 2 . 2H 2 O.

Медь - один из семи металлов, известных с глубокой древности. Переходный период от каменного к бронзовому веку (4 - 3-е тысячелетие до н.э.) назывался медным веком или халколитом (от греческого chalkos - медь и lithos - камень) или энеолитом (от латинского aeneus - медный и греческого lithos - камень). В этот период появляются медные орудия. Известно, что при возведении пирамиды Хеопса использовались медные инструменты.

Чистая медь - ковкий и мягкий металл красноватого, в изломе розового цвета, местами с бурой и пестрой побежалостью, тяжелый (плотность 8,93 г/см 3), отличный проводник тепла и электричества, уступая в этом отношении только серебру (температура плавления 1083 °C). Медь легко вытягивается в проволоку и прокатывается в тонкие листы, но сравнительно мало активна. В сухом вохдухе и кислороде при нормальных условиях медь не окисляется. Но она достаточно легко вступает в реакции: уже при комнатной температуре с галогенами, например с влажным хлором образует хлорид CuCl 2 , при нагревании с серой образует сульфид Cu 2 S, с селеном. Но с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют, например, соляная и разбавленная серная кислоты. Но в присутствии кислорода воздуха медь растворяется в этих кислотах с образованием соотвествующих солей: 2Cu + 4HCl + O 2 = 2CuCl 2 + 2H 2 O.

В атмосфере, содержащей CO 2 , пары H 2 O и др., покрывается патиной - зеленоватой пленкой основного карбоната (Cu 2 (OH) 2 CO 3)), ядовитого вещества.

Медь входит более чем в 170 минералов, из которых для промышленности важны лишь 17, в том числе: борнит (пестрая медная руда - Cu 5 FeS 4), халькопирит (медный колчедан - CuFeS 2), халькозин (медный блеск - Cu 2 S), ковеллин (CuS), малахит (Cu 2 (OH) 2 CO 3). Встречается также самородная медь.

Плотность меди, удельный вес меди и другие характеристики меди

Плотность - 8,93*10 3 кг/м 3 ;
Удельный вес - 8,93 г/cм 3 ;
Удельная теплоемкость при 20 °C - 0,094 кал/град;
Температура плавления - 1083 °C ;
Удельная теплота плавления - 42 кал/г;
Температура кипения - 2600 °C ;
Коэффициент линейного расширения (при температуре около 20 °C) - 16,7 *10 6 (1/град);
Коэффициент теплопроводности - 335ккал/м*час*град;
Удельное сопротивление при 20 °C - 0,0167 Ом*мм 2 /м;

Модули упругости меди и коэффициент Пуассона


СОЕДИНЕНИЯ МЕДИ

Оксид меди (I) Cu 2 O 3 и закись меди (I) Cu 2 O , как и другие соединения меди (I) менее устойчивы, чем соединения меди (II). Оксид меди (I), или закись меди Cu 2 O в природе встречается в виде минерала куприта. Кроме того, она может быть получена в виде осадка красного оксида меди (I) в результате нагревания раствора соли меди (II) и щелочи в присутствии сильного восстановителя.

Оксид меди (II) , или окись меди, CuO - черное вещество, встречающееся в природе (например в виде минерала тенерита). Его получают прокаливанием гидроксокарбоната меди (II) (CuOH) 2 CO 3 или нитрата меди (II) Cu(NO 2) 2 .
Оксид меди (II) хороший окислитель. Гидроксид меди (II) Cu(OH) 2 осаждается из растворов солей меди (II) при действии щелочей в виде голубой студенистой массы. Уже при слабом нагревании даже под водой он разлагается, превращаясь в черный оксид меди (II).
Гидроксид меди (II) - очень слабое основание. Поэтому растворы солей меди (II) в большинстве случаев имеют кислую реакцию, а со слабыми кислотами медь образует основные соли.

Сульфат меди (II) CuSO 4 в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях. Водный раствор сульфата меди имеет характерный сине-голубой цвет. Эта окраска свойственна гидратированным ионам 2+ , поэтому такую же окраску имеют все разбавленные растворы солей меди (II), если только они не содердат каких-либо окрашенных анионов. Из водных растворов сульфат меди кристаллизуется с пятью молекулами воды, образуя прозрачные синие кристаллы медного купороса. Медный купорос применяется для электролитического покрытия металлов медью, для приготовления минеральных красок, а также в качестве исходного вещества при получении других соединений меди. В сельском хозяйстве разбавленный раствор медного купороса применяется для опрыскивания растений и протравливания зерна перед посевом, чтобы уничтожить споры вредных грибков.

Хлорид меди (II) CuCl 2 . 2H 2 O . Образует темно-зеленые кристаллы, легко растворимые в воде. Очень концентрированные растворы хлорида меди (II) имеют зеленый цвет, разбавленные - сине-голубой.

Нитрат меди (II) Cu(NO 3) 2 . 3H 2 O . Получается при растворении меди в азотной кислоте. При нагревании синие кристаллы нитрата меди сначала теряют воду, а затем легко разлагаются с выделением кислорода и бурого диоксида азота, переходя в оксид меди (II).

Гидроксокарбонат меди (II) (CuOH) 2 CO 3 . Встречается в природе в виде минерала малахита, имеющего красивый изумрудно-зеленый цвет. Искусственно приготовляется действием Na 2 CO 3 на растворы солей меди (II).
2CuSO 4 + 2Na 2 CO 3 + H 2 O = (CuOH) 2 CO 3 ↓ + 2Na 2 SO 4 + CO 2
Применяется для получения хлорида меди (II), для приготовления синих и зеленых минеральных красок, а также в пиротехнике.

Ацетат меди (II) Cu (CH 3 COO) 2 . H 2 O . Получается обработкой металлической меди или оксида меди (II) уксусной кислотой. Обычно представляет собой смесь основных солей различного состава и цвета (зеленого и сине-зеленого). Под названием ярь-медянка применяется для приготовления масляной краски.

Комплексные соединения меди образуются в результате соединения двухзарядных ионов меди с молекулами аммиака.
Из солей меди получают разноообразные минеральные краски.
Все соли меди ядовиты. Поэтому, чтобы избежать образования медных солей, медную посуду покрывают изнутри слоем олова (лудят).


ПРОИЗВОДСТВО МЕДИ

Медь добывают из оксидных и сульфидных руд. Из сульфидных руд выплавляют 80% всей добываемой меди. Как правило, медные руды содержат много пустой породы. Поэтому для получения меди используется процесс обогащения. Медь получают методом ее выплавки из сульфидных руд. Процесс состоит из ряда операций: обжига, плавки, конвертирования, огневого и электролитического рафинирования. В процессе обжига большая часть примесных сульфидов превращается в оксиды. Так, главная примесь большинства медных руд пирит FeS 2 превращается в Fe 2 O 3 . Газы, образующиеся при обжиге, содержат CO 2 , который используется для получения серной кислоты. Получающиеся в процессе обжига оксиды железа, цинка и других примесей отделяются в виде шлака при плавке. Жидкий медный штейн (Cu 2 S с примесью FeS) поступает в конвертор, где через него продувают воздух. В ходе конвертирования выделяется диоксид серы и получается черновая или сырая медь. Для извлечения ценных (Au, Ag, Te и т.д.) и для удаления вредных примесей черновая медь подвергается сначала огневому, а затем электролитическому рафинированию. В ходе огневого рафинирования жидкая медь насыщается кислородом. При этом примеси железа, цинка и кобальта окисляются, переходят в шлак и удаляются. А медь разливают в формы. Получающиеся отливки служат анодами при электролитическом рафинировании.
Основным компонентом раствора при электролитическом рафинировании служит сульфат меди - наиболее распространенная и дешевая соль меди. Для увеличения низкой электропроводности сульфата меди в электролит добавляют серную кислоту. А для получения компактного осадка меди в раствор вводят небольшое количество добавок. Металлические примеси, содержащиеся в неочищенной ("черновой") меди, можно разделить на две группы.

1)Fe, Zn, Ni, Co. Эти металлы имеют значительно более отрицательные электродные потенциалы, чем медь. Поэтому они анодно растворяются вместе с медью, но не осаждаются на катоде, а накапливаются в электролите в виде сульфатов. Поэтому электролит необходимо периодически заменять.

2)Au, Ag, Pb, Sn. Благородные металлы (Au, Ag) не претерпевают анодного растворения, а в ходе процесса оседают у анода, образуя вместе с другими примесями анодный шлам, который периодически извлекается. Олово же и свинец растворяются вместе с медью, но в электролите образуют малорастворимые соединения, выпадающие в осадок и также удаляемые.


СПЛАВЫ МЕДИ

Сплавы , повышающие прочность и другие свойства меди, получают введением в нее добавок, таких, как цинк, олово, кремний, свинец, алюминий, марганец, никель. На сплавы идет более 30% меди.

Латуни - сплавы меди с цинком (меди от 60 до 90% и цинка от 40 до 10%) - прочнее меди и менее подвержены окислению. При присадке к латуни кремния и свинца повышаются ее антифрикционные качества, при присадке олова, алюминия, марганца и никеля возрастает антикоррозийная стойкость. Листы, литые изделия используются в машиностроении, особенно в химическом, в оптике и приборостроении, в производстве сеток для целлюлознобумажной промышленности.

Бронзы . Раньше бронзами называли сплавы меди (80-94%) и олова (20-6%). В настоящее время производят безоловянные бронзы, именуемые по главному вслед за медью компоненту.

Алюминиевые бронзы содержат 5-11% алюминия, обладают высокими механическими свойствами в сочетании с антикоррозийной стойкостью.

Свинцовые бронзы , содержащие 25-33% свинца, используют главным образом для изготовления подшипников, работающих при высоких давлениях и больших скоростях скольжения.

Кремниевые бронзы , содержащие 4-5% кремния, применяют как дешевые заменители оловянных бронз.

Бериллиевые бронзы , содержащие 1,8-2,3% бериллия, отличаются твердостью после закалки и высокой упругостью. Их применяют для изготовления пружин и пружинящих изделий.

Кадмиевые бронзы - сплавы меди с небольшим количества кадмия (до1%) - используют для изготовления арматуры водопроводных и газовых линий и в машиностроении.

Припои - сплавы цветных металлов, применяемые при пайке для получения монолитного паяного шва. Среди твердых припоев известен медносеребряный сплав (44,5-45,5% Ag; 29-31%Cu; остальное - цинк).


ПРИМЕНЕНИЕ МЕДИ

Медь, ее соединения и сплавы находят широкое применение в различных отраслях промышленности.

В электротехнике медь используется в чистом виде: в производстве кабельных изделий, шин голого и контактного проводов, электрогенераторов, телефонного и телеграфного оборудования и радиоаппаратуры. Из меди изготавливают теплообменники, вакуум-аппараты, трубопроводы. Более 30% меди идет на сплавы.

Сплавы меди с другими металлами используют в машиностроении, в автомобильной и тракторной промышленности (радиаторы, подшипники), для изготовления химической аппаратуры.

Высокая вязкость и пластичность металла позволяют применять медь для изготовления разнообразных изделий с очень сложным узором. Проволока из красной меди в отожженном состоянии становится настолько мягкой и пластичной, что из нее без труда можно вить всевозможные шнуры и выгибать самые сложные элементы орнамента. Кроме того, проволока из меди легко спаивается сканым серебряным припоем, хорошо серебрится и золотится. Эти свойства меди делают ее незаменимым материалом при производстве филигранных изделий.

Коэффициент линейного и объемного расширения меди при нагревании приблизительно такой же, как у горячих эмалей, в связи с чем при остывании эмаль хорошо держится на медном изделии, не трескается, не отскакивает. Благодаря этому мастера для производства эмалевых изделий предпочитают медь всем другим металлам.

Как и некоторые другие металлы, медь входит в число жизненно важных микроэлементов . Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата - медного купороса CuSO 4 . 5H 2 O. В большом количестве он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь необходима всему живому.

Кристаллическая решетка меди - гранецентрированный куб. Полиморфных превращений она не имеет. Температура плавления 1083 °С. Прочность и пластичность меди сильно зависит от наклепа. После прокатки и отжига медь имеет предел прочности 200...250 МПа, а относительное удлинение 30...35 %.

Вследствие высокой пластичности медь плохо обрабатывается резанием, но легко деформируется в горячем и холодном состояниях. Прочность меди в результате холодной деформации возрастает до 700 МПа, а пластичность ее снижается до 1...3 %.

В зависимости от химического состава существуют следующие марки меди: М00 (99,99 % Си), МО (99,95 % Си), Ml (99,90 % Си), М2 (99,70 % Си), М3 (99,50 % Си), М4 (99,0 % Си). Чем больше цифра в марке меди, тем больше в ней примесей.

Все примеси, кроме бериллия, ухудшают электропроводность меди. Особенно сильно снижают ее элементы, образующие твердые растворы с ограниченной растворимостью и вызывающие сильное искажение кристаллической решетки - фосфор, кремний, железо и мышьяк. Элементы, обладающие полной растворимостью в меди и слабо искажающие ее решетку, в значительно меньшей степени снижают ее электропроводность. Например, серебро почти не влияет на электропроводность меди. Сплав, содержащий приблизительно 0,25 % серебра, применяют для изготовления обмоток сверхмощных турбогенераторов.

Примеси, не растворяющиеся в меди или образующие нерастворимые включения, почти не влияют на электропроводность меди (силикаты, сернистые и кислородные включения, свинец, висмут).

В установках глубокого охлаждения для присоединения манометров и других приборов применяют медные трубки. Малая механическая прочность меди не позволяет использовать медные трубы большого диаметра. Следует иметь в виду, что медь подвержена ползучести при комнатной температуре.

Из-за высокой теплопроводности и хорошей коррозионной стойкости во многих средах медь находит применение как материал для поверхностей нагрева трубчатых теплообменников.

Латуни - медные сплавы, в которых преобладающим легирующим компонентом является цинк. Кроме меди и цинка, латуни могут содержать небольшие примеси других элементов.

Латуни маркируют буквой Л, после буквы следует цифра, указывающая на содержание в ней меди (Л96, Л68 и др.). Если кроме меди и цинка латунь содержит примеси других элементов, то за буквой Л следует буква, принятая для условного обозначения примеси: О - олово, С - свинец, А - алюминий, Ж - железо, Мц - марганец, Н - никель, К - кремний, Ф - фосфор. Например: ЛАЖ60-1 -1 -латунь содержит 60 % меди, 1 % алюминия, 1 % железа, остальное цинк.

Латуни с большим содержанием меди называют томпаками - Л96 и Л80, а Л85 и Л80 - полутомпаками.

В теплотехнике латуни применяют для изготовления трубок конденсаторов паровых турбин и теплофикационных бойлеров. Для конденсаторов, работающих на пресной воде, применяют трубки из латуни Л68, а для теплофикационных бойлеров из Л68 и Л63. Латунные трубки предпочтительнее по сравнению с трубками из углеродистой стали вследствие более высокой коррозионной стойкости в воде.

В процессе эксплуатации наблюдается особый вид разрушения латунных трубок - обесцинкование. Отдельные участки трубы или вся ее поверхность превращаются в рыхлые кристаллы меди. Иногда этот процесс развивается в виде язвенных образований: «пробки» меди легко выпадают, и сплошность трубы нарушается. Нормальный срок службы латунных труб в бойлерах и конденсаторах 20 лет, однако при сплошном слоевом растворении цинка массовый выход из строя труб начинается через 4...6 лет. При образовании «пробок» выход труб из строя начинается через 1...2 года, а иногда даже через несколько месяцев. Латунь Л070-1 несколько лучше сопротивляется растворению цинка, чем латунь Л63, Поэтому трубки из латуни ЛО70-1 ставят на конденсаторы, охлаждаемые морской водой. Сильно ускоряют процесс обесцинкования угольная кислота и аммиак, растворенный в охлаждаемой воде.

Экономичнее устанавливать на охладителях, работающих на морской воде, более дорогие мельхиоровые трубки (МН70-30), срок службы которых составляет не менее 10 лет против 3 лет дешевых латунных трубок.

В табл. 8.1 приведены некоторые латуни и их механические свойства.

Латунные трубки в процессе изготовления получают наклеп, поэтому в материале трубок имеются остаточные напряжения. Хранение их на воздухе приводит к образованию трещин. Для предупреждения образования трещин трубки подвергают отжигу при 200...400 °С в течение нескольких часов.

Для деталей, изготавливаемых обработкой резанием, применяют латунь Л59 и латунь со свинцом ЛС59-1.

Таблица 8.1

Механические свойства некоторых латуней (после отжига)

Ряд латуней применяют преимущественно для изготовления литых деталей. Коррозионно-стойкие детали льют из алюминиевой латуни ЛА67-2,5, на арматурное литье идут латуни ЛК80-ЗЛ и ЛМцОС5 8-2-2-2.

Латунь деформируемая - латунь, содержащая 57...97 % Си, обладающая высокой пластичностью, легко обрабатывается давлением (табл. 8.2).

Таблица 8.2

Химический состав и применение деформируемых латуней*

(по ГОСТ 15527-70)

Окончание табл. 8.2

* В латуни марки Л70 должно быть не более 0,005 % А$; 0,005 % Бп и 0,002 % Б; в антимагнитных латунях содержание железа должно быть не более 0,03 %.

Латунь литейная предназначена для изготовления полуфабрикатов и фасонных деталей методом литья. Латунь литейная содержит 50...81 % Си. В качестве легирующих элементов применяются алюминий, марганец, железо, кремний, олово и свинец. Латуни литейные отличаются высокими литейными свойствами и коррозионной стойкостью. Большинство из них имеют хорошие антифрикционные свойства и в ряде случаев являются полноценными заменителями оловянистых бронз. По ГОСТ 17711-80 изготовляется 10 марок латуни литейной (табл. 8.3).

Из литейной латуни изготовляют коррозионно-стойкие литые детали морских судов (гребные винты, лопасти, арматуру и др.), самолетов, различных машин и аппаратов, всевозможных нажимных и червячных винтов, шестерен, подшипников и других антифрикционных деталей, работающих в тяжелых условиях.

Структура литейной латуни за исключением латуни Л62, однофазовая. Латунь Л62 в отожженном состоянии имеет двухфазную структуру - (а + Р)-кристаллы. При температуре выше 750 °С эта латунь состоит только из кристаллов р-фазы. ПрочТаблица 8.3

Химический состав и механические свойства литейных латуней (по ГОСТ 17711-80)

Механические

свойства

другие элементы

ст в, МПа (не менее)

ЛАЖМц66-6-3-2

ЛМцОС58-2-2-2

* Литье в кокиль. ** Литье в землю. *** Центробежное литье.

ность и твердость латуней возрастает с увеличением содержания цинка. Максимальной пластичностью обладает латунь Л68, применяемая главным образом для деталей, изготовляемых штамповкой или другими видами обработки с высокими степенями вытяжки. Наибольшее применение из стандартных деформируемых латуней имеет латунь Л62, содержащая минимальное количество меди и обладающая достаточно высокими механическими свойствами и коррозионной стойкостью. Деформируемые латуни, предназначаемые для изготовления деталей штамповкой, наряду с высокой пластичностью должны иметь определенный размер зерна. Крупнозернистая структура приводит к образованию на штампованных изделиях шероховатой поверхности. На деформируемых латунях с очень мелким зерном могут возникать трещины при глубокой вытяжке.

Из деформируемых латуней изготавливают листы, прутки, трубки и проволоку.

Латунь деформируемая марки Л96 стойкая против коррозионного растрескивания имеет высокую теплопроводность, применяется для изготовления трубок авиационных радиаторов и конденсаторных трубок.

Латунь Л90 обладает высокой коррозионной стойкостью, хорошо сваривается со сталью. Из нее изготовляют биметаллы типа сталь-латунь.

Латунь деформируемая коррозионно-стойкая - латунь, содержащая 60...91 % Си и один или несколько легирующих элементов.

Латунь деформируемая коррозионно-стойкая обладает более высокой коррозионной стойкостью, чем простые (двойные) латуни, и хорошо обрабатывается давлением. Добавки, улучшающие коррозионную стойкость латуней: алюминий, марганец, кремний, никель, олово и мышьяк.

Алюминий повышает коррозионную стойкость латуней в условиях морской и пресной воды. Добавки никеля и железа к алюминийсодержащим латуням повышают их коррозионную стойкость и прочность. Изготовляются следующие марки, содержащие алюминий: ЛА85-0,5, ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2. Предел прочности этих латуней в отожженном состоянии составляет 380-500 МПа и в наклепанном (на 50 %) - 580...700 МПа, относительное удлинение 40...55 и 8... 12 % соответственно. Латунь деформируемую коррозионно-стойкую с высоким содержанием меди марки ЛА85-0,5 применяют для изготовления знаков отличия, фурнитуры и художественных изделий; ЛА77-2 - для конденсаторных труб. Из латуни деформируемой коррозионно-стойкой ЛАЖ60-1-1 изготовляют трубы и прутки для высокопрочных деталей, работающих в морской воде. Латунь деформируемая коррозионно-стойкая ЛАН59-3-2 отличается высокой прочностью и коррозионной стойкостью и предназначается для коррозионно-стойких, высокопрочных деталей, применяемых в морском судостроении, электромашиностроении и химической апаратуре.

Марганец повышает стойкость латуней против действия морской воды, хлоридов и перегретого пара. В сочетании с алюминием и железом марганец также повышает прочность латуней. Механические свойства выпускаемых латуней деформируемых коррозионно-стойких с марганцем марок ЛЖМц59-1-1, ЛМц58-2 и ЛМцА57-3-1: предел прочности 45...600 МПа, относительное удлинение 40...60 %. Из латуней ЛЖМц59-1-1, ЛМц58-2 и ЛМцА57-3-1 изготовляют трубы, листы, полосы и прутки. Выпускают также нестандартную латунь ЛНМцЖА60-1-2-1-1 (58...62 % Си, 0,1...0,5 % №, 1,5...2,5 % Мп, 0,5...1,1 % Ре и 0,5... 1 % А1), характеризующуюся высокой коррозионной стойкостью в пресной и морской воде. Эта латунь заменяет бронзы и латуни с высоким содержанием меди и может изготовляться из вторичных медных сплавов; применяется для изготовления деталей в морском судостроении.

Кремний (кремнистая латунь) повышает коррозионную стойкость латуней в морской воде и атмосферных условиях, а также увеличивает стойкость против коррозионного растрескивания. Выпускается латунь с кремнием стандартная ЛК80-3 и нестандартная ЛКС65-1,3-3 (63,5...66,5 % Си, 1...2 % Бц 2,5...3,5 РЬ). Последняя хорошо обрабатывается резанием и обладает высокими антифрикционными свойствами. Из латуни ЛК80-3 изготовляют кованные и штампованные детали. Механические свойства латуни ЛК80-3: предел прочности 300...500 МПа, относительное удлинение 15...40 %.

Никель (никелевая латунь) повышает коррозионную стойкость латуней в атмосферных условиях и морской воде и несколько увеличивает стойкость против обесцинкования. Выпускается стандартная латунь ЛН65-5, отличающаяся высокой коррозионной стойкостью и повышенными механическими свойствами (предел прочности 380...700 МПа, относительное удлинение 4...60 %). Из латуни ЛН65-5 изготовляют листы, полосы, ленты, трубы, прутки и профили. Ее применяют для конденсаторных труб, манометрических трубок и сеток бумагоделательных машин.

Олово повышает коррозионную стойкость латуней в морской и пресной воде, вследствие чего они получили название морских латуней. По ГОСТ 17711-80 выпускают четыре марки латуни с оловом: ЛО90-1, ЛО70-1, Л062-1 и ЛО60-1. Механические свойства оловянистых латуней в зависимости от содержания олова: предел прочности в отожженном состоянии от 280 до 350 МПа, в нагартованном состоянии от 450 до 650 МПа, а относительное удлинение 40...60 % и 8... 12 % соответственно. Из латуни ЛО90-1 изготовляют полосы и ленты, применяемые для антифрикционных деталей, от которых требуется хорошая коррозионная стойкость. Латунь Л070-1 в основном предназначается для изготовления конденсаторных труб, теплотехнической аппаратуры и т.п. Латунь Л062-1 поставляется в виде листов, полос и прутков и предназначается для всевозможных деталей в морском судостроении. Латунь ЛО60-1 применяется в виде проволоки и тонких прутков для сварки различных конструкций в судостроении.

Мышьяк в количестве до 0,05 % в несколько раз повышает стойкость против обесцинкования латуней с высоким содержанием цинка (более 20 %).

Латунь заклепочная. К ней относится латунь Л 62, из которой изготавливают проволоку диаметром от 1 до 10 мм. Проволока выпускается в отожженном состоянии с а в не менее 380 МПа и относительным удлинением не менее 18 %. Во избежание коррозионного растрескивания клепанные детали необходимо подвергать низкотемпературному отжигу при 250...300 °С.

Бронзы. Бронзы - сплавы меди, в которых основным легирующим компонентом является любой металл, кроме цинка. Цинк также может входить в состав бронз, но в них он не является основным легирующим элементом. Большинство бронз обладают хорошими литейными свойствами и хорошо обрабатываются резанием.

Обозначение марок бронз начинаются буквами Бр. Далее следуют буквы, соответствующие легирующим элементам бронзы. Цифры указывают на содержание этих элементов в процентах. Например: БрСЗО содержит около 30 % свинца, а БрФ6,5-0,25 содержит 6,5 % олова и 0,25 % фосфора.

Из бронз изготавливают втулки подшипников скольжения и другие трущиеся детали (шестерни, направляющие и др.). Бронзы обеспечивают малый коэффициент трения в паре со сталью, хорошо прирабатываются (хорошо воспринимают очертания вала), выдерживают большие удельные давления и мало изнашиваются.

Материал вкладыша подшипника или другой трущейся детали, обладающий хорошими антифрикционными свойствами, должен состоять, по крайней мере, из двух структурных составляющих: твердой и мягкой. В процессе приработки вала к подшипнику мягкая составляющая вырабатывается, образуются микроканалы, по которым циркулирует смазка. Вал опирается на твердые включения вкладыша подшипника. Но твердые включения материала вкладыша должны быть мягче самой мягкой структурной составляющей вала. Иначе твердые включения материала вкладыша подшипника будут вызывать быстрый износ вала. Мягкая металлическая основа вкладыша хорошо поглощает случайно попавшие в подшипник твердые частицы.

Оловянистые бронзы склонны к ликвации: при ускоренном охлаждении они получают резко выраженное дендритное строение. Хорошие литейные свойства оловянистых бронз позволяют применять их для фасонного литья.

Обработке давлением можно подвергать только однофазные бронзы, содержащие не более 5...6 % 8п. Эти бронзы проходят рекристаллизационный отжиг (при 600...650 °С) - как промежуточную операцию при холодной обработке давлением или заключительную операцию для придания готовым полуфабрикатам требуемых свойств. Оловянистые бронзы, особенно двухфазные, обладают высокими антифрикционными свойствами.

Бронзы с большим содержанием дорогостоящего олова заменяют более дешевыми бронзами, в которые добавляют цинк и свинец. Кроме того, свинец улучшает обрабатываемость резанием.

В оловянистые бронзы добавляют также фосфор (до 1 %), который является раскислителем и улучшает их литейные свойства. Фосфор повышает механические и антифрикционные свойства.

Алюминиевые бронзы , содержащие до 6...8 % А1, обрабатывают давлением в холодном или горячем состоянии. Холодная деформация значительно повышает прочность.

Кремнистые бронзы превосходят оловянистые по механическим свойствам и в то же время являются более дешевыми. Они обладают высокой устойчивостью против коррозии в ряде агрессивных сред, особенно в щелочах. Однофазные кремнистые бронзы обладают высокой пластичностью.

Бериллиевые бронзы содержат 2...2,5 % Ве, обладают наилучшим комплексом свойств из всех известных бронз. Бериллиевая бронза значительно повышает механические свойства в результате термической обработки. Наиболее высокие механические свойства бериллиевые бронзы приобретают после закалки с

760...780 °С в воде и старении при 300...350 °С в течение 2 ч.

В закаленном состоянии бериллиевые бронзы имеют а в = = 500 МПа; 5 = 45 % и твердость НВ 120. При старении временное сопротивление разрыву возрастает до 1300... 1350 МПа, твердость до НВ 400, относительное удлинение снижается до 1,5 %, Из бериллиевых бронз изготавливают пружины в электроаппаратуре, мембраны, а также детали электронной техники.

Свинцовистые бронзы содержат до 30 % РЬ. Свинец и медь нерастворимы в твердом состоянии, поэтому микроструктура свинцовистых бронз состоит из кристаллов более твердой меди и мягкого свинца. Это обеспечивает хорошие антифрикционные свойства сплава, но механические свойства при заливке в кокиль невысокие. Свинцовистые бронзы применяют для изготовления вкладышей подшипников, работающих с большими скоростями и при повышенных давлениях.

В табл. 8.4 приведены механические свойства и назначение некоторых бронз.

Таблица 8.4

Механические свойства и назначение бронз

Окончание табл. 8.4

Состояние

материала

Назначение

БрОФ6,5-0,15

холодной

деформации

Листы и ленты, проволока для пружин

Токоведущие пружины, контакты (пружинящие) в электромашинах и аппаратах химической промышленности

холодной

деформации

Литье в землю

Фасонное литье

Прессованные прутки

Прутки, поковки

БрАЖ10-4-4Л

Литье в кокиль

Фасонное литье

БрАЖН 10-4-4

деформации и отжига

Прутки, трубы, поковки

холодной

деформации

После прокатки и отжига

Лента, проволока, прутки. Сварные резервуары в пищевой промышленности

холодной

деформации

Ответственные детали узлов трения, работающих при высоких скоростях, повышенных удельных давлениях и температурах. Пружинящие контакты, пружины, мембраны, сильфоны

После закалки и старения

  • 1150...

Минерал из класса самородных элементов. В природном минерале обнаруживаются Fe, Ag, Au, As и другие элементы в виде примеси или образующие с Cu твёрдые растворы. Простое вещество медь - это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. Он входит в семёрку металлов, известных человеку с очень древних времён. Медь является необходимым элементом для всех высших растений и животных.

Смотрите так же:

СТРУКТУРА

Кубическая сингония, гексаоктаэдрический вид симметрии m3m, кристаллическая структура — кубическая гранецентрированная решётка. Модель представляет собой куб из восьми атомов в углах и шести атомов, расположенных в центре граней (6 граней). Каждый атом данной кристаллической решетки имеет координационное число 12. Самородная медь встречается в виде пластинок, губчатых и сплошных масс, нитевидных и проволочных агрегатов, а также кристаллов, сложных двойников, скелетных кристаллов и дендритов. Поверхность часто покрыта плёнками «медной зелени» (малахит), «медной сини» (азурит), фосфатов меди и других продуктов её вторичного изменения.

СВОЙСТВА

Медь - золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь - один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5-58 МСм/м. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком.

Существует ряд сплавов меди: латуни - с цинком, бронзы - с оловом и другими элементами, мельхиор - с никелем и другие.

ЗАПАСЫ И ДОБЫЧА

Среднее содержание меди в земной коре (кларк) - (4,7-5,5)·10 −3 % (по массе). В морской и речной воде содержание меди гораздо меньше: 3·10 −7 % и 10 −7 % (по массе) соответственно. Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т - подтверждённые запасы, на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.
Медь получают из медных руд и минералов. Основные методы получения меди - пирометаллургия, гидрометаллургия и электролиз. Пирометаллургический метод заключается в получении меди из сульфидных руд, например, халькопирита CuFeS 2 . Гидрометаллургический метод заключается в растворении минералов меди в разбавленной серной кислоте или в растворе аммиака; из полученных растворов медь вытесняют металлическим железом.

ПРОИСХОЖДЕНИЕ

Небольшой самородок меди

Обычно самородная медь образуется в зоне окисления некоторых медносульфидных месторождений в ассоциации с кальцитом, самородным серебром, купритом, малахитом, азуритом, брошантитом и другими минералами. Массы отдельных скоплений самородной меди достигают 400 тонн. Крупные промышленные месторождения самородной меди вместе с другими медьсодержащими минералами формируются при воздействии на вулканические породы (диабазы, мелафиры) гидротермальных растворов, вулканических паров и газов, обогащенных летучими соединениями меди (например, месторождение озера Верхнее, США).
Самородная медь встречается также в осадочных породах, преимущественно в медистых песчаниках и сланцах.
Наиболее известные месторождения самородной меди — Туринские рудники (Урал), Джезказганское (Казахстан), в США (на полуострове Кивино, в штатах Аризона и Юта).

ПРИМЕНЕНИЕ

Из-за низкого удельного сопротивления, медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов и силовых трансформаторов.
Другое полезное качество меди - высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления.
В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы.
В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото очень мягкий металл и нестойко к этим механическим воздействиям.
Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц - всех поверхностей, к которым прикасается рука человека.

Медь (англ. Copper) — Cu

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.1

Strunz (8-ое издание) 1/A.01-10
Nickel-Strunz (10-ое издание) 1.AA.05
Dana (7-ое издание) 1.1.1.3
Dana (8-ое издание) 1.1.1.3

В большей части промышленных отраслей используется такой металл, как медь. Благодаря высокой электропроводности без этого материала не обходится ни одна область электротехники. Из нее образуются проводники, обладающими отличными эксплуатационными особенностями. Помимо этих особенностей медь обладает пластичностью и тугоплавкостью, устойчивостью к коррозии и агрессивным средам. И сегодня мы рассмотрим металл со всех сторон: укажем цену за 1 кг лома меди, поведаем о ее использовании и производстве.

Понятие и особенности

Медь представляет собой химический элемент, носящийся к первой группы периодической системы имени Менделеева. Этот пластичный металл имеет золотисто – розовый цвет и является одним из трех металлов с ярко выраженным окрашиванием. С давних времен активно используется человеком во многих областях промышленности.

Главной особенностью металла является его высокая электро- и теплопроводность. Если сравнивать с другими металлами, то проведение электрического тока через медь выше в 1,7 раз, чем у алюминия, и почти в 6 раз выше, чем у железа.

Медь имеет ряд отличительных особенностей перед остальными металлами:

  1. Пластичность . Медь представляет собой мягкий и пластичный металл. Если брать во внимание медную проволоку, она легко гнется, принимает любые положения и при этом не деформируется. Сам же металл достаточно немного надавить, чтобы проверить эту особенность.
  2. Устойчивость к коррозии . Этот фоточувствительный материал отличается высокой устойчивостью к возникновению коррозии. Если медь на длительный срок оставить во влажной среде, на ее поверхности начнет появляться зеленая пленка, которая и защищает металл от негативного влияния влаги.
  3. Реакция на повышение температуры . Отличить медь от других металлов можно путем ее нагревания. В процессе медь начнет терять свой цвет, а затем становиться темнее. В результате при нагреве металла он достигнет черного цвета.

Благодаря таким особенностям можно отличить данный материал от , и других металлов.

Видео ниже расскажет вам про полезные свойства меди:

Плюсы и минусы

Преимуществами данного металла являются:

  • Высокий показатель теплопроводности;
  • Устойчивость к влиянию коррозии;
  • Достаточно высокая прочность;
  • Высокая пластичность, которая сохраняется до температуры -269 градусов;
  • Хорошая электропроводность;
  • Возможность легирования с различными добавочными компонентами.

Про характеристики, физические и химические свойства вещества-металла меди и ее сплавов читайте ниже.

Свойства и характеристики

Медь, как малоактивный металл, не вступает во взаимодействие с водой, солями, щелочами, а также со слабой серной кислотой, но при этом подвержена растворению в концентрированной серной и азотной кислоте.

Физические свойства метала:

  • Температура плавления меди составляет 1084°C;
  • Температура кипения меди составляет 2560°C;
  • Плотность 8890 кг/м³;
  • Электрическая проводимость 58 МОм/м;
  • Теплопроводность 390 м*К.

Механические свойства:

  • Предел прочности на разрыв при деформированном состоянии составляет 350-450 МПа, при отожженном – 220-250 МПа;
  • Относительное сужение в деформированном состоянии 40-60%, в отожженном – 70-80%;
  • Относительное удлинение в деформированном состоянии составляет 5-6 δ ψ%, в отожженном – 45-50 δ ψ%;
  • Твердость составляет в деформированном состоянии 90-110 НВ, в отожженном – 35-55 НВ.

При температуре ниже 0°С этот материал обладает более высокой прочностью и пластичностью, чем при +20°С.

Структура и состав

Медь, имеющая высокий коэффициент электропроводности, отличается наименьшим содержанием примесей. Доля их в составе может приравниваться 0,1%. С целью увеличения прочности меди в нее добавляют различные примеси: сурьма, и прочее. В зависимости от ее состава и степени содержания чистой меди различают несколько ее марок.

Структурный тип меди может включать в себя также кристаллы серебра, кальция, алюминий, золота и других компонентов. Все они отличаются сравнительной мягкостью и пластичностью. Частичка самой меди имеет кубическую форму, атому которой расположены на вершинах F –ячейки. Каждая ячейка состоит из 4 атомов.

О том, где брать медь, смотрите в этом видеоролике:

Производство материалов

В природных условиях данный металл содержится в самородной меди и сульфидных рудах. Широкое распространение при производстве меди получили руды под названием «медный блеск» и «медный колчедан», которые содержат до 2% необходимого компонента.

Большую часть (до 90%) первичного металла благодаря пирометаллургическому способу, который включает в себя массу этапов: процесс обогащения, обжиг, плавка, обработка в конвертере и рафинирование. Оставшаяся часть получается гидрометаллургическим способом, который заключается в ее выщелачивании разведенной серной кислоты.

Области применения

в следующих областях:

  • Электротехническая промышленность , которая заключается, в первую очередь, в производстве электропроводов. Для этих целей медь должна быть максимально чистой, без посторонних примесей.
  • Изготовление филигранных изделий . Медная проволока в отожженном состоянии отличается высокой пластичностью и прочностью. Именно поэтому, она активно используется при производстве различных шнуров, орнаментов и прочих конструкций.
  • Переплавка катодной меди в проволоку . Самые разнообразные медные изделия переплавляются в слитки, которые идеально подходят для дальнейшей прокатки.

Медь активно используется в самых различных сферах промышленности. Она может входить в состав не только проволоки, но и оружия и даже бижутерии. Ее свойства и широкая сфера применения благоприятно повлияли на ее популярность.

Видео ниже расскажет о том, как медь может изменить свои свойства:

  • Обозначение - Cu (Copper);
  • Период - IV;
  • Группа - 11 (Ib);
  • Атомная масса - 63,546;
  • Атомный номер - 29;
  • Радиус атома = 128 пм;
  • Ковалентный радиус = 117 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 ;
  • t плавления = 1083,4°C;
  • t кипения = 2567°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,90/1,75;
  • Степень окисления: +3, +2, +1, 0;
  • Плотность (н. у.) = 8,92 г/см 3 ;
  • Молярный объем = 7,1 см 3 /моль.

Медь (купрум, свое название получила в честь острова Кипр, где было открытое крупное медное месторождение) является одним из первых металлов, который освоил человек - Медный век (эпоха, когда в обиходе человека преобладали медные орудия) охватывает период IV-III тысячелетия до н. э.

Сплав меди с оловом (бронза) был получен на Ближнем Востоке за 3000 лет до н. э. Бронза была предпочтительней меди, поскольку была более прочна и лучше поддавалась ковке.


Рис. Строение атома меди .

Электронная конфигурация атома меди - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 (см. Электронная структура атомов). У меди один спаренный электрон с внешнего s-уровня "перескакивает" на d-подуровень предвнешней орбитали, что связано с высокой устойчивостью полностью заполненного d-уровня. Завершенный устойчивый d-подуровень меди обусловливает ее относительную химическую инертность (медь не реагирует с водородом, азотом, углеродом, кремнием). Медь в соединениях может проявлять степени окисления +3, +2, +1 (наиболее устойчивые +1 и +2).


Рис. Электронная конфигурация меди.

Физические свойства меди:

  • металл, красно-розового цвета;
  • обладает высокой ковкостью и пластичностью;
  • хорошей электропроводностью;
  • малым электрическим сопротивлением.

Химические свойства меди

  • при нагревании реагирует с кислородом:
    O 2 + 2Cu = 2CuO;
  • при длительном пребывании на воздухе реагирует с кислородом даже при комнатной температуре:
    O 2 + 2Cu + CO 2 + H 2 O = Cu(OH) 2 ·CuCO 3 ;
  • вступает в реакции с азотной и концентрированной серной кислотой:
    Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O;
  • с водой, растворами щелочей, соляной и разбавленной серной кислотой медь не реагирует.

Соединения меди

Оксид меди CuO (II) :

  • твердое вещество красно-коричневого цвета, не растворимое в воде, проявляет основные свойства;
  • при нагревании в присутствии восстановителей дает свободную медь:
    CuO + H 2 = Cu + H 2 O;
  • оксид меди получают взаимодействием меди с кислородом или разложением гидроксида меди (II):
    O 2 + 2Cu = 2CuO; Cu(OH) 2 = CuO + H 2 O.

Гидроксид меди Cu(OH 2)(II ):

  • кристаллическое или аморфное вещество голубого цвета, нерастворимое в воде;
  • разлагается на воду и оксид меди при нагревании;
  • реагирует с кислотами, образуя соответствующие соли:
    Cu(OH 2) + H 2 SO 4 = CuSO 4 + 2H 2 O;
  • реагирует с растворами щелочей, образуя купраты - комплексные сооединения ярко-синего цвета:
    Cu(OH 2) + 2KOH = K 2 .

Более подробно о соединениях меди см. Оксиды меди .

Получение и применение меди

  • пирометаллургическим методом медь получают из сульфидных руд при высоких температурах:
    CuFeS 2 + O 2 + SiO 2 → Cu + FeSiO 3 + SO 2 ;
  • оксид меди восстанавливается до металлической меди водородом, угарным газом, активными металлами:
    Cu 2 O + H 2 = 2Cu + H 2 O;
    Cu 2 O + CO = 2Cu + CO 2 ;
    Cu 2 O + Mg = 2Cu + MgO.

Применение меди обусловливается ее высокой электро- и теплопроводностью, а также пластичностью:

  • изготовление электрических проводов и кабелей;
  • в теплообменной аппаратуре;
  • в металлургии для получения сплавов: бронзы, латуни, мельхиора;
  • в радиоэлектронике.